
AMBER 9
Users’ Manual

Principal contributors to the current codes:

David A. Case (The Scripps Research Institute)
Tom Darden (NIEHS)
Thomas E. Cheatham III (University of Utah)
Carlos Simmerling (Stony Brook)
Junmei Wang (Encysive Pharmaceuticals)
Robert E. Duke (NIEHS and UNC-Chapel Hill)
Ray Luo (UC Irvine)
Kenneth M. Merz (Florida)
David A. Pearlman (UC San Francisco)
Mike Crowley (TSRI)
Ross Walker (TSRI)
Bing Wang (Florida)
Seth Hayik (Florida)
Adrian Roitberg (Florida)
Gustavo Seabra (Florida)

Xiongwu Wu (NIH)
Scott Brozell (TSRI)
Vickie Tsui (TSRI)
Holger Gohlke (J.W. Goethe-Universität)
Lijiang Yang (UC Irvine)
Chunhu Tan (UC Irvine)
John Mongan (UC San Diego)
Viktor Hornak (Stony Brook)
Guanglei Cui (Stony Brook)
Paul Beroza (Telik)
David H. Mathews (Rochester)
Christian Schafmeister (Pitt)
Wilson S. Ross (UC San Francisco)
Peter A. Kollman (UC San Francisco)

Additional key contributors to earlier versions:

Robert V. Stanton (UC San Francisco)
Jed Pitera (UC San Francisco)
Irina Massova (UC San Francisco)
Ailan Cheng (Penn State)
James J. Vincent (Penn State)

Randall Radmer (UC San Francisco)
George L. Seibel (UC San Francisco)
James W. Caldwell (UC San Francisco, Stanford)
U. Chandra Singh (UC San Francisco)
Paul Weiner (UC San Francisco)

Additional key people involved in force field development:

Piotr Cieplak (Burnham Institute)
Yong Duan (University of Delaware)
Rob Woods (University of Georgia)
Karl Kirschner (University of Georgia)
Sarah M. Tschampel (University of Georgia)

Alexey Onufriev (Virginia Tech.)
Christopher Bayly (Merck-Frost)
Wendy Cornell (UC San Francisco, Novartis)
Scott Weiner (UC San Francisco)

Page 2

Acknowledgments

We acknowledge the generous cooperation of Wilfred van Gunsteren, whose molecular dynamics
code was used as the basis of the md modules in version 2.0. We are also pleased to acknowledge
Rad Olson and Bill Swope at IBM Almaden Center, whose contributions were instrumental in
developing the better vector optimized non-bonded routines first released in version 3, revision A.
Research support from DARPA, NIH and NSF for Peter Kollman is gratefully acknowledged, as
is support from NIH, NSF, ONR and DOE for David Case. Use of the facilities of the UCSF
Computer Graphics Laboratory (Thomas Ferrin, PI) is appreciated. The pseudocontact shift code
was provided by Ivano Bertini of the University of Florence. We thank Chris Bayly and Merck-
Frosst, Canada for permission to include charge increments for the AM1-BCC charge scheme.
Many people helped add features to various codes; these contributions are described in the docu-
mentation for the individual programs.

Recommended Citations:

When citing Amber Version 9 in the literature, the following citation should be used:

D.A. Case, T.A. Darden, T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R.
Luo, K.M. Merz, D.A. Pearlman, M. Crowley, R.C. Walker, B. Wang, S. Hayik, A. Roit-
berg, G. Seabra, X. Wu, S. Brozell, V. Tsui, H. Gohlke, L. Yang, C. Tan, J. Mongan, V.
Hornak, G. Cui, P. Beroza, D.H. Mathews, C. Schafmeister, W.S. Ross, and P.A. Kollman
(2006), AMBER 9, University of California, San Francisco.

The history of the codes and a basic description of the methods can be found in two papers:

D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, III, S. DeBolt, D.
Ferguson, G. Seibel, and P. Kollman. AMBER, a package of computer programs for
applying molecular mechanics, normal mode analysis, molecular dynamics and free
energy calculations to simulate the structural and energetic properties of molecules.
Comp. Phys. Commun. 91, 1-41 (1995).

D.A. Case, T. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, Jr., A. Onufriev, C.
Simmerling, B. Wang and R. Woods. The Amber biomolecular simulation programs. J.
Computat. Chem. 26, 1668-1688 (2005).

Peter Kollman died unexpectedly in May, 2001. We dedicate Amber to his memory.

Cover Illustration
The cover shows three snapshots from an Amber all-atom MD simulation of HIV- 1 protease
along with a cyclic urea inhibitor. The inhibitor was manually placed into the binding site of an
open structure of the protease. The structure was obtained from Amber MD of the unbound pro-
tease. The top structure shows the initial complex, the middle shows a later snapshot in which the
active site flaps are seen to be closing over the inhibitor and the lowest image shows the final
structure, with the flaps fully closed. The crystal structure of the complex is shown in transparent
gray in all three images for reference. All images were generated by Carlos Simmerling using
VMD. For further details, see Refs. [1,2].

3/3/06

Table of Contents i

Table of Contents

1. Introduction ... 3

1.1. What to read next ... 4

1.2. Information flow in Amber .. 4

1.2.1. Preparatory programs .. 6

1.2.2. Simulation programs ... 6

1.2.3. Analysis programs .. 6

1.3. Installation of Amber 9 .. 7

1.3.1. More information on parallel machines or clusters .. 9

1.3.2. Installing Non-Standard Features ... 9

1.3.3. Installing on Microsoft Windows .. 10

1.3.4. Testing ... 10

1.3.5. Memory Requirements .. 11

1.3.6. Notes for users of previous versions of Amber ... 11

1.4. Basic tutorials ... 12

2. Specifying a force field .. 14

2.1. Description of the database files .. 15

2.2. Specifying which force field you want in LEaP .. 17

2.3. The AMOEBA potentials ... 18

2.4. The Duan et al. (2003) force field .. 18

2.5. The Yang et al. (2003) united-atom force field .. 19

2.6. 1999 and 2002 force fields and recent updates to these parameters 19

2.7. The Cornell et al. (1994) force field ... 20

2.8. The Weiner et al. (1984,1986) force fields ... 21

2.9. Glycam-04 force field for carbohydrates ... 21

2.9.1. Notes on the naming of Prep files ... 22

2.9.2. Carbohydrate Naming Convention in Glycam-04 .. 23

2.9.3. Building a polysaccharide in LEaP ... 27

2.10. Ions ... 28

2.11. Solvent models ... 28

3. LEaP ... 30

3.1. Introduction .. 30

3.2. Concepts ... 30

3.2.1. Commands .. 31

3.2.2. Variables .. 31

3.2.3. Objects .. 31

3.3. Starting LEaP ... 36

3.3.1. Verbosity ... 37

3.3.2. Log File ... 37

Table of Contents ii

3.4. Using LEaP .. 37

3.4.1. Universe Editor ... 38

3.4.2. Unit Editor .. 38

3.4.2.1. Unit Editor Menu Bar .. 38

3.4.2.2. Unit Editor Manipulation Buttons ... 40

3.4.2.3. Unit Editor Elements Buttons .. 41

3.4.2.4. Unit Editor Viewing Window .. 41

3.4.3. Atom Properties Editor ... 42

3.4.4. Parmset Editor ... 42

3.5. Basic instructions for using LEaP with AMBER .. 43

3.5.1. Building a Molecule For Molecular Mechanics ... 43

3.5.2. Amino Acid Residues ... 43

3.5.3. Nucleic Acid Residues .. 45

3.5.4. Miscellaneous Residues .. 45

3.6. Commands ... 46

3.6.1. add ... 46

3.6.2. addAtomTypes .. 47

3.6.3. addIons .. 47

3.6.4. addPdbAtomMap .. 47

3.6.5. addPdbResMap ... 48

3.6.6. alias ... 49

3.6.7. bond ... 49

3.6.8. bondByDistance .. 49

3.6.9. center ... 50

3.6.10. charge .. 50

3.6.11. check ... 50

3.6.12. combine ... 51

3.6.13. copy ... 51

3.6.14. createAtom .. 52

3.6.15. createParmset .. 52

3.6.16. createResidue .. 52

3.6.17. createUnit .. 52

3.6.18. deleteBond .. 52

3.6.19. desc ... 53

3.6.20. edit ... 54

3.6.21. groupSelectedAtoms ... 54

3.6.22. help .. 55

3.6.23. impose ... 55

3.6.24. list .. 56

3.6.25. loadAmberParams ... 56

3.6.26. loadAmberPrep ... 56

3.6.27. loadOff .. 57

Table of Contents iii

3.6.28. loadMol2 ... 58

3.6.29. loadPdb ... 58

3.6.30. loadPdbUsingSeq .. 59

3.6.31. logFile ... 59

3.6.32. measureGeom ... 59

3.6.33. quit .. 60

3.6.34. remove ... 60

3.6.35. saveAmberParm .. 61

3.6.36. saveAmberParmPol ... 62

3.6.37. saveOff .. 62

3.6.38. savePdb ... 62

3.6.39. sequence .. 62

3.6.40. set .. 63

3.6.41. setBox ... 65

3.6.42. solvateBox ... 66

3.6.43. solvateCap ... 67

3.6.44. solvateDontClip .. 68

3.6.45. solvateOct ... 68

3.6.46. solvateShell ... 69

3.6.47. source .. 69

3.6.48. transform ... 69

3.6.49. translate ... 70

3.6.50. verbosity .. 70

3.6.51. zMatrix .. 71

4. Antechamber ... 73

4.1. Principal programs ... 73

4.1.1. antechamber .. 73

4.1.2. parmchk ... 76

4.2. A simple example for antechamber ... 76

4.3. Programs called by antechamber ... 79

4.3.1. atomtype .. 79

4.3.2. am1bcc .. 80

4.3.3. bondtype .. 80

4.3.4. prepgen .. 81

4.3.5. espgen ... 82

4.3.6. respgen .. 82

4.4. Miscellaneous programs .. 82

4.4.1. crdgrow ... 82

4.4.2. parmcal .. 83

4.4.3. database ... 83

5. Sander basics ... 84

5.1. Introduction. .. 84

Table of Contents iv

5.2. Credits. .. 85

5.3. File usage. ... 86

5.4. Example input files. .. 87

5.5. Overview of the information in the input file. .. 89

5.6. General minimization and dynamics parameters. ... 89

5.6.1. General flags describing the calculation. ... 90

5.6.2. Nature and format of the input. .. 90

5.6.3. Nature and format of the output. .. 91

5.6.4. Frozen or restrained atoms. .. 93

5.6.5. Energy minimization. ... 93

5.6.6. Molecular dynamics. .. 94

5.6.7. Self-Guided Langevin dynamics. ... 95

5.6.8. Temperature regulation. ... 95

5.6.9. Pressure regulation. .. 97

5.6.10. SHAKE bond length constraints. ... 98

5.6.11. Water cap. .. 99

5.6.12. NMR refinement options. ... 99

5.7. Potential function parameters .. 100

5.7.1. Generic parameters ... 100

5.7.2. Particle Mesh Ewald. ... 101

5.7.3. Using IPS for the calculation of nonbonded interactions 104

5.7.4. Extra point options .. 104

5.7.5. Polarizable potentials. .. 105

5.7.6. Dipole Printing .. 106

5.8. Weight change information. .. 106

5.9. File redirection commands. ... 111

6. Using Sander ... 113

6.1. The Generalized Born/Surface Area Model .. 113

6.1.1. GB/SA input parameters ... 115

6.1.2. ALPB (Analytical Linearized Poisson-Boltzmann) .. 118

6.2. Poisson-Boltzmann calculations. .. 119

6.2.1. Introduction. ... 119

6.2.2. Usage and keywords. ... 121

6.2.2.1. Static calculations. .. 121

6.2.2.2. Dynamic calculations. ... 122

6.2.3. Example inputs. .. 126

6.2.3.1. Static calculations. .. 126

6.2.3.2. Dynamic calculations. ... 127

6.3. Empirical Valence Bond .. 128

6.3.1. Introduction. ... 128

6.3.2. General usage description. ... 129

6.3.3. EVB input variables and interdependencies. ... 132

Table of Contents v

6.3.4. Biased sampling. .. 135

6.3.5. Biased sampling usage. .. 137

6.4. QM/MM calculations ... 139

6.4.1. Changes from earlier versions of Amber .. 140

6.4.2. The hybrid QM/MM potential .. 140

6.4.3. The QM/MM interface and link atoms ... 141

6.4.4. Generalized Born implicit solvent .. 142

6.4.5. Ewald and PME .. 143

6.4.6. Hints for running successful QM/MM calculations .. 143

6.4.7. General QM/MM &qmmm Namelist Variables ... 144

6.4.8. Link Atom Specific QM/MM &qmmm Namelist Variables 149

6.5. Free energies using thermodynamic integration. .. 149

6.6. Targeted MD .. 153

6.7. Potentials of mean force using umbrella sampling. .. 155

6.8. Steered Molecular Dynamics (SMD) and the Jarzynski Relationship 156

6.9. Replica Exchange Molecular Dynamics (REMD) ... 158

6.9.1. Restarting REMD simulations .. 160

6.9.2. Content of the output files .. 161

6.9.3. Major changes from sander when using replica exchange 161

6.9.4. Cautions when using replica exchange ... 162

6.9.5. Replica exchange example .. 163

6.9.6. Replica exchange using a hybrid solvent model ... 164

6.9.7. Cautions for hybrid solvent replica exchange ... 165

6.10. Nudged elastic band calculations ... 166

6.10.1. Background ... 166

6.10.2. Preparing input file for NEB ... 167

6.10.3. Input Variables .. 168

6.11. Constant pH calculations ... 168

6.11.1. Background ... 168

6.11.2. Preparing a system for constant pH .. 169

6.11.3. Running at constant pH ... 170

6.11.4. Analyzing constant pH simulations .. 171

6.11.5. Extending constant pH to additional titratable groups 172

6.11.5.1. Defining charge sets ... 172

6.11.5.2. Calculating relative energies .. 173

6.11.5.3. Testing the titratable group definitions .. 173

6.12. NMR refinement using SANDER. .. 174

6.12.1. Distance, angle and torsional restraints. .. 175

6.12.2. NOESY volume restraints. ... 180

6.12.3. Chemical shift restraints. ... 182

6.12.4. Direct dipolar coupling restraints .. 185

6.12.5. Preparing restraint files for Sander ... 187

Table of Contents vi

6.12.6. Preparing distance restraints: makeDIST_RST. ... 187

6.12.7. Preparing torsion angle restraints: makeANG_RST 191

6.12.8. Chirality restraints: makeCHIR_RST ... 193

6.12.9. Direct dipolar coupling restraints: makeDIP_RST 193

6.12.10. Getting summaries of NMR violations ... 194

6.12.11. Time-averaged restraints. ... 194

6.12.12. Multiple copies refinement using LES .. 195

6.12.13. Some sample input files .. 196

6.13. Path-Integral Molecular Dynamics .. 203

6.13.1. General theory. ... 203

6.13.2. Preparing PIMD input files ... 206

6.14. Using the AMOEBA force field ... 207

7. Divcon ... 210

7.1. Introduction. .. 210

7.2. Getting Started ... 210

7.2.1. Standard Jobs .. 211

7.2.2. Divide and Conquer Jobs .. 211

7.3. Keywords ... 211

7.3.1. Hamiltonians ... 212

7.3.2. Convergence Criterion .. 212

7.3.3. Restrained Atoms .. 212

7.3.4. Output ... 213

7.3.5. General .. 215

7.3.6. Gradient ... 218

7.3.7. Atomic Charges .. 218

7.3.8. Subsetting .. 218

7.3.9. Nuclear Magnetic Resonance(NMR) .. 221

7.3.10. Default Keywords ... 221

7.4. Citation Information ... 222

8. PMEMD ... 223

8.1. Introduction. .. 223

8.2. Functionality .. 223

8.3. New variables ... 226

8.4. New command line options ... 227

8.5. Some Performance Hints ... 228

8.6. Installation .. 228

8.7. Acknowledgements .. 228

9. LES ... 230

9.1. Preparing to use LES with AMBER .. 230

9.2. Using the ADDLES program ... 231

9.3. More information on the ADDLES commands and options 234

9.4. Using the new topology/coordinate files with SANDER .. 235

Table of Contents vii

9.5. Using LES with the Generalized Born solvation model .. 236

9.6. Case studies: Examples of application of LES .. 236

9.6.1. Enhanced sampling for individual functional groups: Glucose. 236

9.6.2. Enhanced sampling for a small region: Application of LES to a nucleic
acid loop ... 237

9.6.3. Improving conformational sampling in a small peptide 238

9.7. Unresolved issues with LES in AMBER ... 240

10. ptraj .. 242

10.1. ptraj command prerequisites .. 243

10.2. ptraj input/output commands ... 244

10.3. ptraj commands that modify the state .. 245

10.4. ptraj action commands ... 246

10.5. Correlation and fluctuation facility .. 254

10.6. Examples .. 258

10.7. Hydrogen bonding facility ... 260

10.8. rdparm .. 261

11. MM_PBSA ... 264

11.1. General instructions ... 264

11.2. Preparing the input file ... 266

11.3. Auxiliary programs used by MM_PBSA ... 273

12. Nmode .. 274

12.1. Introduction .. 274

12.2. General description .. 274

12.3. Files .. 275

12.4. Input description .. 275

13. Miscellaneous ... 279

13.1. Resp .. 279

13.2. nucgen .. 279

13.3. ambpdb ... 281

13.4. protonate .. 283

13.5. ambmask .. 285

13.6. pol_h and gwh .. 287

13.7. fantasian ... 288

13.8. elsize .. 289

14. Appendices ... 291

14.1. Appendix A: Namelist Input Syntax ... 291

14.2. Appendix B: GROUP Specification .. 292

14.3. Appendix C: Retired Namelist Variables ... 296

15. References .. 298

Table of Contents viii

Introduction Page 3

1. Introduction
Amber is the collective name for a suite of programs that allow users to carry out molecular

dynamics simulations, particularly on biomolecules. None of the individual programs carries this
name, but the various parts work reasonably well together, and provide a powerful framework for
many common calculations [3,4]. The term amber is also sometimes used to refer to the empiri-
cal force fields that are implemented here [5]. It should be recognized however, that the code and
force field are separate: several other computer packages have implemented the amber force
fields, and other force fields can be implemented with the amber programs. Further, the force
fields are in the public domain, whereas the codes are distributed under a license agreement.

Amber 9 (2006) represents a significant change from the most recent previous version,
Amber 8, which was released in March, 2004. Briefly, the major differences include:

(1) Force fields: Many new force field types are available:

(a) updates to existing non-polarizable (ff99) and polarizable (ff02) protein force fields,
with improved torsional parameters for peptides and proteins;

(b) a new united-atom (no non-polar hydrogens) force field, derived with a philosophy
similar to the ff03 all-atom force field [6];

(c) an extension of the General Amber Force Field (gaff), that expands the range of appli-
cable molecules, particularly for conjugated systems [7];

(d) support for the AMOEBA polarizable potentials of Ren and Ponder [8,9];

(e) an empirical valence bond model that can be used to construct approximate potentials
for chemical reactions;

(2) QM/MM Simulations: Amber 9 features new and significantly improved QM/MM sup-
port, whereby part of the system can be treated via quantum mechanics (QM). The
QM/MM facility supports gas phase, implicit solvent (GB) and periodic boundary (PME)
simulations where the energies and forces for the QM part of the system can be derived
from a semi-empirical method, such as MNDO, AM1, PM3, or PM3/PDDG. Compared
to earlier versions, the QM/MM implementation offers improved accuracy, energy conser-
vation, and performance.

In addition, gas-phase or solvent-cap QM/MM simulations can be carried out with the
MNDO/d or SCC-DFTB [10] Hamiltonians. Large quantum regions (with hundreds of
atoms) can be modeled with a divide-and-conquer linear-scaling approach, and chemical
shifts can be computed from semiempirical wav efunctions.

(3) Generalized Born models: Amber 9 features a new model with a pairwise molecular vol-
ume correction that shows substantially better agreement with molecular surface Poisson-
Boltzmann and explicit solvent results than previous Amber GB models [11].

(4) Updates to the Poisson-Boltzmann applications: these include new nonbonded routines,
newly optimized atomic cavity radii based on explicit-solvent free energy simulations,
improved visualization option for electrostatic potential, and a new nonpolar solvation
model with an explicit treatment of dispersion interaction that greatly improves the corre-
lation with nonpolar solvation free energies in explicit solvent.

3/3/06

Introduction Page 4

(5) Nudged elastic band simulations can be used to search for approximate transition states in
complex transformations. The self-guided Langevin dynamics method can be used to
accelerate conformational searches.

(6) Path integral molecular dynamics simulations can be used to sample equilibrium canoni-
cal distributions using quantum dynamics rather than Newton’s equations for nuclear
motion.

(7) Fr ee energies can also be estimated from from non-equilibrium "targeted" or "pulling"
simulations, using the Jarzynski identity.

(8) Updates to the replica exchange methods, including improvements to the standard replica
exchange code and support for a new replica exchange method in which a hybrid solvent
model is used to reduce the number of replicas required for large systems in explicit sol-
vent.

(9) General improvements in speed and parallel scaling are available in an expanded pmemd
program, which now includes generalized Born capability.

(10) NetCDF binary trajectory files are now supported by sander, pmemd and ptraj. Compared
to formatted trajectory files, the binary trajectory files are smaller, higher precision and
significantly faster to read and write. NetCDF provides for file portability across architec-
tures, allows for backwards compatible extensibility of the format and enables the files to
be self-describing. Support for this format will also be available in VMD 1.8.4.

1.1. What to read next
If you are installing this package see Section 1.3. New users should continue with this

Chapter, and should consult the tutorial information in Section 1.4. Everyone should read Chap-
ter 2, which contains information about force fields, and which is extensively revised from earlier
versions of Amber. There are also tips and examples on the Amber Web pages at
http://amber.scripps.edu. Although Amber may appear dauntingly complex at first, it
has become easier to use over the past few years, and overall is reasonably straightforward once
you understand the basic architecture and option choices. In particular, we hav e worked hard on
the tutorials to make them accessible to new users. Hundreds of people have learned to use
Amber; don’t be easily discouraged.

If you want to learn more about basic biochemical simulation techniques, there are a variety
of good books to consult, ranging from introductory descriptions [12,13], to standard works on
liquid state simulation methods [14,15], to multi-author compilations that cover many important
aspects of biomolecular modelling [16-18]. Looking for "paradigm" papers that report simula-
tions similar to ones you may want to undertake is also generally a good idea.

1.2. Information flow in Amber
Understanding where to begin in Amber is primarily a problem of managing the flow of

information in this package--see Fig. 1. You first need to understand what information is needed
by the simulation programs (sander, pmemd and nmode). You need to know where it comes from,
and how it gets into the form that the energy programs require. This section is meant to orient the
new user and is not a substitute for the individual program documentation.

3/3/06

Introduction Page 5

pdb
antechamber,

LEaP
LES
info

NMR or
XRAY info

prmtop
prmcrd

sander,
nmode,
pmemd

ptrajmm-pbsa

Fig. 1. Basic information flow in Amber

Information that all the simulation programs need:

(1) Cartesian coordinates for each atom in the system. These usually come from Xray crys-
tallography, NMR spectroscopy, or model-building. They should be in Protein Databank
(PDB) format. The program LEaP provides a platform for carrying out many of these
modeling tasks, but users may wish to consider other programs as well.

(2) "Topology": connectivity, atom names, atom types, residue names, and charges. This
information comes from the database, which is found in the amber9/dat/leap/prep direc-
tory, and is described in Chapter 2. It contains topology for the standard amino acids as
well as N- and C-terminal charged amino acids, DNA, RNA, and common sugars. The
database contains default internal coordinates for these monomer units, but coordinate
information is usually obtained from PDB files. Topology information for other
molecules (not found in the standard database) is kept in user-generated "residue files",
which are generally created using antechamber.

(3) Force field: Parameters for all of the bonds, angles, dihedrals, and atom types in the sys-
tem. The standard parameters for several force fields are found in the
amber9/dat/leap/parm directory; consult Chapter 2 for more information. These files
may be used "as is" for proteins and nucleic acids, or users may prepare their own files
that contain modifications to the standard force fields.

(4) Commands: The user specifies the procedural options and state parameters desired.
These are specified in the input files (usually called mdin) to the sander, pmemd, or
nmode programs.

3/3/06

Introduction Page 6

1.2.1. Preparatory programs

LEaP is the primary program to create a new system in Amber, or to modify old sys-
tems. It combines the functionality of prep, link, edit, and parm from
earlier versions.

ANTECHAMBER
is the main program from the Antechamber suite. If your system contains more
than just standard nucleic acids or proteins, this may help you prepare the input
for LEaP.

1.2.2. Simulation programs

SANDER is the basic energy minimizer and molecular dynamics program. This program
relaxes the structure by iteratively moving the atoms down the energy gradient
until a sufficiently low average gradient is obtained. The molecular dynamics
portion generates configurations of the system by integrating Newtonian equa-
tions of motion. MD will sample more configurational space than minimization,
and will allow the structure to cross over small potential energy barriers. Config-
urations may be saved at regular intervals during the simulation for later analysis,
and basic free energy calculations using thermodynamic integration may be per-
formed.

More elaborate conformational searching and modeling MD studies can also be
carried out using the SANDER module. This allows a variety of constraints to be
added to the basic force field, and has been designed especially for the types of
calculations involved in NMR structure refinement.

PMEMD is a version of sander that is optimized for speed and for parallel scaling. The
name stands for "Particle Mesh Ewald Molecular Dynamics," but this code can
now also carry out generalized Born simulations. The input and output have only
a few changes from sander.

NMODE is both a quasi-Newton Raphson second derivative energy minimizer and vibra-
tional analysis program. NMODE can calculate the normal modes of the system
as well as numerous thermochemical properties. Other features include the abil-
ity to compute "Langevin modes" (normal modes including viscous coupling to a
continuum solvent) and techniques to find transitions states as well as minima.

1.2.3. Analysis programs

PTRAJ is a general purpose utility for analyzing and processing trajectory or coordinate
files created from MD simulations (or from various other sources), carrying out
superpositions, extractions of coordinates, calculation of bond/angle/dihedral val-
ues, atomic positional fluctuations, correlation functions, analysis of hydrogen
bonds, etc. The same executable, when named rdparm (from which the program
ev olved), can examine and modify prmtop files.

MM-PBSA is a script that automates energy analysis of snapshots from a molecular dynam-
ics simulation using ideas generated from continuum solvent models.

3/3/06

Introduction Page 7

1.3. Installation of Amber 9
To compile the basic AMBER distribution, do the following:

(1) Set up the AMBERHOME environment variable to point to where the Amber tree resides on
your machine. For example

Using csh, tcsh, etc: setenv AMBERHOME /usr/local/amber9

Using bash, sh, zsh, etc: set AMBERHOME=/usr/local/amber9

export AMBERHOME

NOTE: Be sure to replace the "/usr/local" part above with whatever path is appropriate
for your machine. You should then add $AMBERHOME/exe to your PATH.

(2) Go to the $AMBERHOME/src directory, and create a configuration file for a serial ver-
sion:

./configure -help

will show you the options available. Choose a machine/compiler name, for example:

./configure -p4 g95

This will create a config.h file for a single-processor Pentium IV machine using the
g95 compiler (see http://www.g95.org). You can examine and edit this file to
match your local environment, if necessary. Do not choose any parallel options
(-mpich, -lam,...) at this point. (Note: if you choose one of the "ifort" options, be
sure to execute the ifortvars.sh or ifortvars.csh script, in order to set up the proper envi-
ronment variables.)

(3) Now compile everything:

make serial

Loader warnings (especially on SGI) can generally be ignored; compiler warnings should
be considered, but most are innocuous. If a program that you don’t need initially fails to
compile, you should consider invoking "make" with the ignore errors option (make -i)
or commenting out that line in the Makefile, and seeing if the rest of the suite can be
compiled correctly.

(4) To test the basic AMBER distribution, do this:

cd $AMBERHOME/test

make test.serial

You can also try "make test.<program-name>", to test individual programs. See
$AMBERHOME/test/Makefile for the available options.

Where "possible FAILURE" messages are found, go to the indicated directory under
$AMBERHOME/test, and look at the "*.dif" files. Differences should involve round-off
in the final digit printed, or occasional messages that differ from machine to machine (see

3/3/06

Installation Page 8

below for details). As with compilation, if you have trouble with individual tests, you
may wish to invoke "make" with the ignore errors option (make -i) or comment out
certain lines in the Makefile, and/or go directly to the $AMBERHOME/test subdirectories
to examine the inputs and outputs in detail. For convenience, all of the failure messages
are collected in the file $AMBERHOME/test/TEST_FAILURES.DAT ; you can quickly
see from these if there is anything more than round-off errors.)

(5) Once you have some experience with the serial version of Amber, you may wish to build
a parallel version as well. Because of the vagaries of MPI libraries, this has more pitfalls
than installing the serial version; hence you should not do this just "because it is there".
Build a parallel version when you know you have a basic understanding of Amber, and
you need extra features.

Also note this: you may want to build a parallel version even for a machine with a single
cpu. The free energy and empirical valence bond (EVB) facilities require a parallel
installation, but these will generally run fine using two threads on a single-cpu machine.
It is also the case (especially if you have an Intel CPU with hyper-threading enabled) that
you will get a modest speedup by running an MPI job with two threads, even on a
machine with just one physical CPU.

To build a parallel version, do the following: First, you need to install an MPI library, if
one is not already present on your machine. As an example, here are general instructions
for installing Open MPI; for more specific information, see its documentation.

cd /usr/local (or wherever you want)

tar xvf openmpi-1.0.tar

cd /usr/local/openmpi-1.0

setenv FC=/opt/intel_fc_80/bin/ifort (or your compiler)

setenv CC=/opt/intel_cc_80/bin/icc

setenv CXX=/opt/intel_cc_80/bin/icpc

make

make install

setenv MPI_HOME=/usr/local

Look out for errors, etc., but this should install Open MPI on your system. You should
add $MPI_HOME/bin to your PATH and $MPI_HOME/lib to your
LD_LIBRARY_PATH. You are now ready to compile a parallel version of the Amber
programs:

cd $AMBERHOME/src

make clean (important! don’t neglect this step)

./configure -mpi ifort (as an example)

make parallel

This creates three new executables: sander.MPI, sander.LES.MPI and sander.PIMD.MPI.
The serial versions will still be available in $AMBERHOME/exe, just without the "MPI"
extension. [Note that this is a change from previous releases, where both serial and paral-
lel versions were just called "sander".]

To test parallel programs, you need first to set the DO_PARALLEL environment variable

3/3/06

Installation Page 9

as follows:

cd $AMBERHOME/test

setenv DO_PARALLEL ’mpirun -np 4’

make test.parallel

The integer is the number of processors; if your command to run MPI jobs is something
different than mpirun (e.g. it is dmpirun on Tru64 Unix systems), use the command
appropriate for your machine.

(6) At this point, you should also compile the PMEMD (particle-mesh Ewald molecular
dynamics) program. (Note that, in spite of its name, this code now can do implicit solvent
GB calculations as well.) See Chapter 8 of the Users’ Manual, and $AMBER-
HOME/src/pmemd/README for instructions.

1.3.1. More information on parallel machines or clusters
This section contains notes about the various parallel implementations supplied in the cur-

rent release. Only sander and pmemd are parallel programs; all others are single threaded.
NOTE: Parallel machines and networks fail in unexpected ways. PLEASE check short parallel
runs against a single-processor version of Amber before embarking on long parallel simulations!

The MPI (message passing) version was initially developed by James Vincent and Ken
Merz, based on 4.0 and later an early prerelease 4.1 version [19]. This version was optimized,
integrated and extended by James Vincent, Dave Case, Tom Cheatham, Scott Brozell, and Mike
Crowley, with input from Thomas Huber, Asiri Nanyakkar, and Nathalie Godbout.

The bonds, angles, dihedrals, SHAKE (only on bonds involving hydrogen), nonbonded
energies and forces, pairlist creation, and integration steps are parallelized. The code is pure
SPMD (single program multiple data) using a master/slave, replicated data model. Basically, the
master node does all of the initial set-up and performs all the I/O. Depending on the version
and/or what particular input options are chosen, either all the non-master nodes execute force() in
parallel, or all nodes do both the forces and the dynamics in parallel. Communication is done to
accumulate partial forces, update coordinates, etc.

For reasons we don’t understand, some MPI implementations require a null file for stdin,
ev en though sander doesn’t take any input from there. This is true for some SGI and HP
machines. If you receive a message like "stopped, tty input", try the following:

mpirun -np <num-proc> sander [options] < /dev/null

1.3.2. Installing Non-Standard Features
The source files of some Amber programs contain multiple code paths. These code paths

are guarded by directives to the C preprocessor. All Amber programs regardless of source lan-
guage use the C preprocessor. The activation of non-standard features in guarded code paths can
be controlled at build time via the -D preprocessor option. For example, to enable the use of a
Lennard-Jones 10-12 potential with the sander program the HAS_10_12 preprocessor guard must
be activated with -DHAS_10_12.

3/3/06

Installation Page 10

To ease the installers burden we provide a hook into the build process. The hook is the environ-
ment variable AMBERBUILDFLAGS. For example, to build sander with -DHAS_10_12, assum-
ing that a correct configuration file has already been created, do the following:

cd $AMBERHOME/src/sander

make clean

make AMBERBUILDFLAGS=’-DHAS_10_12’ sander

Note that AMBERBUILDFLAGS is accessed by all stages of the build process: preprocessing,
compiling, and linking. In rare cases a stage may emit warnings for unknown options in
AMBERBUILDFLAGS; these may usually be ignored.

1.3.3. Installing on Microsoft Windows
All of Amber (including the X-windows parts) will compile and run on Windows using the

Cygwin development tools: see http://sources.redhat.com/cygwin. We recommend (certainly as a
first step) using the g95 compiler (see http://www.g95.org) along with the gcc compiler that
comes with cygwin.

Note that Cygwin provides a POSIX-compatible environment for Windows. Effective use
of this environment requires a basic familiarity with the principles of Linux or Unix operating
systems. Building the Windows version is thus somewhat more complex (not simpler) than build-
ing under other operating systems. You should only attempt this after you have a basic familiarity
with the cygwin environment. The Windows version has only been tested in a single-cpu environ-
ment.

1.3.4. Testing
We hav e installed and tested Amber 9 on a number of platforms, using UNIX, Linux,

Microsoft Windows or Macintosh OSX operating systems. However, owing to time and access
limitations, not all combinations of code, compilers, and operating systems have been tested.
Therefore we recommend running the test suites.

The distribution contains a validation suite that can be used to help verify correctness. The
nature of molecular dynamics, is such that the course of the calculation is very dependent on the
order of arithmetical operations and the machine arithmetic implementation, i.e. the method used
for roundoff. Because each step of the calculation depends on the results of the previous step,
the slightest difference will eventually lead to a divergence in trajectories. As an initially identi-
cal dynamics run progresses on two different machines, the trajectories will eventually become
completely uncorrelated. Neither of them are "wrong;" they are just exploring different regions of
phase space. Hence, states at the end of long simulations are not very useful for verifying correct-
ness. Averages are meaningful, provided that normal statistical fluctuations are taken into
account. "Different machines" in this context means any difference in floating point hardware,
word size, or rounding modes, as well as any differences in compilers or libraries. Differences in
the order of arithmetic operations will affect roundoff behavior; (a + b) + c is not necessarily the
same as a + (b + c). Different optimization levels will affect operation order, and may therefore
affect the course of the calculations.

All initial values reported as integers should be identical. The energies and temperatures on
the first cycle should be identical. The RMS and MAX gradients reported in sander are often
more precision sensitive than the energies, and may vary by 1 in the last figure on some machines.

3/3/06

Installation Page 11

In minimization and dynamics calculations, it is not unusual to see small divergences in behavior
after as little as 100-200 cycles.

1.3.5. Memory Requirements
The Amber 9 programs mainly use dynamic memory allocation, and do not generally need

to be compiled for any specific size of problem. Some sizes related to NMR refinements are
defined in nmr.h If you receive error messages directing you to look at these files, you may need
to edit them, then recompile.

If you get a "Segmentation fault" immediately upon starting a program (particularly if this
happens with no arguments), you may not have enough memory to run the program. The "size"
command will show you the size of the executable. Also check the limits of your shell; you may
need to increase these (especially stacksize, which is sometimes set to quite small values).

1.3.6. Notes for users of previous versions of Amber
The comments here point out some features and compatibility changes that may be affect

those who have used previous versions of this package.

(1) The way two system Hamiltonians are prepared for free energy calculations is different
from earlier versions. In particular, there is no longer a "perturbed prmtop" file; the
beginning and ending states are created in the usual way as individual prmtop files. See
Section 6.5 for more information.

(2) In spite of its name, the pmemd program can now carry out generalized Born simulations.
This means that many more simulations can make use of this program, which is consider-
ably faster than sander, especially in parallel environments.

(3) There is a new binary format for trajectory files, using the netCDF libraries and file for-
mats. See the sander and ptraj chapters for more information.

(4) The nmode program is no longer being developed, and will probably be phased out in the
next release. Better functionality is available from NAB (Nucleic Acid Builder): see
http://www.scripps.edu/case/nab.html.

(5) There are some new executable names in this release. In the past, sander could refer to
either a serial or a parallel program. Now, the command make serial will create sander,
and make parallel will create sander.MPI. If you have existing scripts that run parallel
jobs, you may have to substitute sander.MPI for sander inside these.

(6) There are two sets of features that require separate compilation because they would slow
down the basic code too much if they were present in the base program. For locally
enhanced sampling, you will need to use the sander.LES (serial) or sander.LES.MPI (par-
allel) programs. Similarly, for path-integral MD or for nudged elastic band, you will need
to use the sander.PIMD or sander.PIMD.MPI programs.

(7) In Amber 8, running replica exchange programs required a special compilation, with
-DREM specified at compile-time. This is no longer necessary: the basic sander.MPI
code includes a replica exchange capability; (note that replica exchange implies a parallel
mode of execution, so that the serial sander does not support replica exchange.)

3/3/06

Tutorial Page 12

1.4. Basic tutorials
AMBER is a suite of programs for use in molecular modeling and molecular simulations. It

consists of a substructure database, a force field parameter file, and a variety of useful programs.
Here we give some commented sample runs to provide an overview of how things are carried out.
The examples only cover a fraction of the things that it is possible to do with AMBER. The for-
mats of the example files shown are described in detail later in the manual, in the chapters per-
taining to the programs. Tom Cheatham, Bernie Brooks and Peter Kollman have prepared some
detailed information on simulation protocols that should be also be consulted [20].

Additional tutorial examples are available at http://amber.scripps.edu. Because the web can
provide a richer interface than one can get on the printed page (with screen shots, links to the
actual input and output files, etc.), most of our recent efforts have been devoted to updating the
tutorials on the web site. In particular, new users are advised to look at the following, which can
be found at both the web site listed above, and on the distribution CD, under amber9/tutorial:

DNA Basic introduction to LEaP, sander, and ptraj, to
build, solvate, run MD and analyze trajectories.

Plastocyanin/ion/water Basic tutorial for a protein, introducing non-
standard residues, NMR restraints, and more
complex modeling tasks.

Loop dynamics in HIV integrase Show how a study of protein dynamical behavior
was carried out, illustrating some more complex
setups and analyses.

NMR refinement of DNA Basic introduction to NMR refinement using
LEaP and sander.

GB simulation Carrying out a protein simulation using the gen-
eralized Born continuum solvent model.

We are in the process of creating additional tutorials; because of the lead time needed to print this
manual, there may be new tutorials available, either in amber9/tutorial or at the web site listed
above. You should also look at the sample inputs in the chapters devoted to each program, espe-
cially for LEaP and sander.

As a basic example, we consider here the minimization of a protein in a simple solvent
model. The procedure consists of three steps:

Step 1. Generate some starting coordinates.

The first step is to obtain starting coordinates. We begin with the bovine pancreatic trypsin
inhibitor, and consider the file 6pti.pdb, exactly as distributed by the Protein Data Bank. This file
(as with most PDB files) needs some editing before it can be used by Amber. First, alternate con-
formations are provided for residues 39 and 50, so we need to figure out which one we want. For
this example, we choose the "A" conformation, and manually edit the file to remove the alternate
conformers. Second, coordinates are provided for a phosphate group and a variety of water
molecules. These are not needed for the calculation we are pursuing here, so we also edit the file
to remove these. Third, the cysteine residues are involved in disulfide bonds, and need to have

3/3/06

Tutorial Page 13

their residue names changed in an editor from CYS to CYX to reflect this. Finally, since we
removed the phosphate groups, some of the CONECT records now refer to non-existent atoms; if
you are not sure that the CONECT records are all correct then it may be safest to remove all of
them, as we do for this example. Let’s call this modified file 6pti.mod.pdb.

Although Amber tries hard to understand pdb-format files, it is typical to have to do some
manual editing before proceeding. A general prescription is: "keep running the loadPdb step in
LEaP (see step 2, below), and editing the pdb file, until there are no error messages."

Step 2. Run LEaP to generate the parameter and topology file.

This is a fairly straightforward exercise in loading in the pdb file, adding the disulfide cross
links, and saving the resulting files. Typing the following commands should work in either tleap
or xleap:

source leaprc.ff94

bpti = loadPdb 6pti.mod.pdb

bond bpti.5.SG bpti.55.SG

bond bpti.14.SG bpti.38.SG

bond bpti.30.SG bpti.51.SG

saveAmberParm bpti prmtop prmcrd

quit

Step 3. Perform some minimization.

Use this script:

Running minimization for BPTI

cat << eof > min.in
200 steps of minimization, generalized Born solvent model
&cntrl

maxcyc=200, imin=1, cut=12.0, igb=1, ntb=0, ntpr=10,
/
eof
sander -i min.in -o 6pti.min1.out -c prmcrd -r 6pti.min1.xyz
/bin/rm min.in

This will perform minimization (imin=1) for 200 steps (maxcyc), using a nonbonded cut-
off of 12 Å (cut), a generalized Born solvent model (igb=1), and no periodic boundary
(ntb=0); intermediate results will be printed every 10 steps (ntpr). Text output will go to file
6pti.min1.out, and the final coordinates to file 6pti.min1.xyz. The "out" file is intended to be read
by humans, and gives a summary of the input parameters and a history of the progress of the min-
imization.

Of course, Amber can do much more than the above minimization. This example illustrates
the basic information flow in Amber: Cartesian coordinate preparation (Step 1.), topology and
force field selection (Step 2.), and simulation program command specification (Step 3.). Typically
the subsequent steps are several stages of equilibration, production molecular dynamics runs, and
analyses of trajectories. The tutorials in amber9/tutorial should be consulted for examples of
these latter steps.

3/3/06

Force fields Page 14

2. Specifying a force field
Amber is designed to work with several simple types of force field, although it is most com-

monly used with parameterizations developed by Peter Kollman and his co-workers. There are
now a variety of such parameterizations, with no obvious "default" value. The "traditional"
parameterization uses fixed partial charges, centered on atoms. Examples of this are ff94, ff99 and
ff03 (described below). The default in versions 5 and 6 of Amber was ff94; a comparable default
now would probably be ff03 or ff99SB, but users should consult the papers listed below to see a
detailed discussion of the changes made.

Less extensively used, but very promising, recent modifications add polarizable dipoles to
atoms, so that the charge description depends upon the environment; such potentials are called
"polarizable" or "non-additive". Examples are ff02 and ff02EP: the former has atom-based
charges (as in the traditional parameterization), and the latter adds in off-center charges (or "extra
points"), primarily to help describe better the angular dependence of hydrogen bonds. Again,
users should consult the papers cited below to see details of how these new force fields have been
developed.

In order to tell LEaP which force field is being used, the four types of information described
below need to be provided. This is generally accomplished by selecting an appropriate leaprc
file, which loads the information needed for a specific force field. (See section 2.2, below).

(1) A listing of the atom types, what elements they correspond to, and their hybridizations.
This information is encoded as a set of LEaP commands, and is normally read from a
leaprc file.

(2) Residue descriptions (or "topologies") that describe the chemical nature of amino acids,
nucleotides, and so on. These files specify the connectivities, atom types, charges, and
other information. These files have a "prep" format (a now-obsolete part of Amber) and
have a ".in" extension. Standard libraries of residue descriptions are in the
amber9/dat/leap/prep directory. The antechamber program may be used to generate prep
files for other organic molecules.

(3) Parameter files give force constants, equilibrium bond lengths and angles, Lennard-Jones
parameters, and the like. Standard files have a ".dat" extension, and are found in
amber9/dat/leap/parm.

(4) Extensions or changes to the parameters can be included in frcmod files. The expectation
is that the user will load a large, "standard" parameter file, and (if needed) a smaller frc-
mod file that keeps track of any changes to the default parameters that are needed. The
frcmod files for changing the default water model (which is TIP3P) into other water mod-
els are in files like amber9/dat/leap/parm/frcmod.tip4p. The parmchk program (part of
antechamber) can also generate frcmod files.

3/3/06

Force fields Page 15

2.1. Description of the database files
The following files are in the amber9/dat/leap directory. Files with a ".in" extension are in

the prep subdirectory; those with a ".dat" extension are in the parm subdirectory, as are the "frc-
mod" files; files ending with ".off" or ."lib" are in the lib subdirectory.

Glycam 2004 (Woods et al.) force field

glycam04.dat Parameters for oligosaccharides

glycam04EP.dat Parameters for oligosaccharides, using extra points

glycam04.in Topologies for glycosyl residues

glycam04EP.in Topologies for glycosyl residues, using extra points

Amber 2003 (Duan et al.) force field

frcmod.ff03 For proteins: changes to parm99.dat, primarily in the

phi and psi torsions.

all_amino03.in Charges and atom types for proteins.

Amber 2003 (Yang et al.) united-atom force field

frcmod.ff03ua For proteins: changes to parm99.dat, primarily in the

introduction of new united-atom carbon types and new

side chain torsions.

uni_amino03.in Amino acid input for building database

uni_aminont03.in NH3+ amino acid input for building database.

uni_aminoct03.in COO- amino acid input for building database.

Amber 2002 polarizable force field, and recent updates

parm99.dat Force field, for amino acids and some organic molecules;

can be used with either additive or

non-additive treatment of electrostatics.

parm99EP.dat Like parm99.dat, but with "extra-points": off-center

atomic charges, somewhat like lone-pairs.

frcmod.ff02pol.r1 Updated torsion parameters for ff02.

all_nuc02.in Nucleic acid input for building database, for a non-

additive (polarizable) force field without extra points.

all_amino02.in Amino acid input ...

all_aminoct02.in COO- amino acid input ...

all_aminont02.in NH3+ amino acid input

all_nuc02EP.in Nucleic acid input for building database, for a non-

additive (polarizable) force field with extra points.

all_amino02EP.in Amino acid input ...

all_aminoct02EP.in COO- amino acid input ...

all_aminont02EP.in NH3+ amino acid input

3/3/06

Force fields Page 16

Amber 1999 (Wang et al.) force field, and recent updates

parm99.dat Basic force field parameters

gaff.dat Force field for general organic molecules.

frcmod.ff99SB "Stony Brook" modification to ff99 backbone torsions

frcmod.ff99SP "Sorin/Pande" modification to ff99 backbone torsions

Amber 1994 (Cornell et al.) force field

all_nuc94.in Nucleic acid input for building database.

all_amino94.in Amino acid input for building database.

all_aminoct94.in COO- amino acid input for database.

all_aminont94.in NH3+ amino acid input for database.

nacl.in Ion file.

parm94.dat 1994 force field file.

parm96.dat Modified version of 1994 force field, for proteins.

parm98.dat Modified version of 1994 force field, for nucleic acids.

Amber 1984, 1986 (Weiner et al.) force fields

all.in All atom database input.

allct.in All atom database input, COO- Amino acids.

allnt.in All atom database input, NH3+ Amino acids.

uni.in United atom database input.

unict.in United atom database input, COO- Amino acids.

unint.in United atom database input, NH3+ Amino acids.

parm91X.dat Parameters for 1984, 1986 force fields.

Solvent models:

water.in Topology definition for several water models.

meoh.in Topology file for methanol.

chcl3.in Topology file for chloroform.

nma.in Topology file for N-methylacetamide.

tip3pbox.off Solvation box for TIP3P water.

tip4pbox.off Solvation box for TIP4P water.

pol3box.off Solvation box for POL3 water.

spcebox.off Solvation box for SPC/E water.

meohbox.off Solvation box for methanol.

nmabox.off Solvation box for N-methylacetamide.

chcl3box.off Solvation box for chloroform.

8Mureabox.off Solvation box for 8M urea/water mixture

(see 8Murea.readme for more information).

frcmod.tip4p Parameter changes from TIP3P -> TIP4P.

frcmod.tip5p Parameter changes from TIP3P -> TIP5P.

frcmod.spce Parameter changes from TIP3P -> SPC/E.

frcmod.pol3 Parameter changes from TIP3P -> POL3.

frcmod.meoh Parameters for methanol.

frcmod.chcl3 Parameters for chloroform.

frcmod.nma Parameters for N-methyacetamide.

3/3/06

Force fields Page 17

frcmod.urea Parameters for urea (or urea-water mixtures).

Miscellaneous:

nucgen.dat Nucgen nucleic acid conformations.

PROTON_INFO* Files needed for protonate

map.DG-AMBER Needed for NMR input generation.

2.2. Specifying which force field you want in LEaP
Various combinations of the above files make sense, and we have moved to an "ff" (force

field) nomenclature to identify these; examples would then be ff94 (which was the default in
Amber 5 and 6), ff99, etc. The most straightforward way to specify which force field you want is
to use one of the leaprc files in $AMBERHOME/dat/leap/cmd. The sytax is:

xleap -s -f <filename>

Here, the -s flag tells LEaP to ignore any leaprc file it might find, and the -f flag tells it to start
with commands for some other file. Here are the combinations we support and recommend:

How to specify force fields in LEaP
filename topology parameters

leaprc.ff86 Weiner et al. 1986 parm91X.dat
leaprc.ff94 Cornell et al. 1994 parm94.dat
leaprc.ff96 " parm96.dat
leaprc.ff98 " parm98.dat
leaprc.ff99 " parm99.dat
leaprc.ff99SB " parm99.dat+frcmod.ff99SB
leaprc.ff03 Duan et al. 2003 parm99.dat+frcmod.ff03
leaprc.ff03ua Yang et al. 2003 parm99.dat+frcmod.ff03+frcmod.ff03ua
leaprc.ff02 reduced (polarizable) charges parm99.dat+frcmod.ff02pol.r1
leaprc.ff02EP " + extra points parm99EP.dat
leaprc.gaff none gaff.dat
leaprc.glycam04 Woods et al. glycam04.dat
leaprc.glycam04EP " glycam04EP.dat

Notes:

(1) There is no default leaprc file. If you make a link from one of the files above to a file
named leaprc, then that will become the default. For example:

cd $AMBERHOME/dat/leap/cmd

ln -s leaprc.ff03 leaprc

or

3/3/06

Force fields Page 18

cd $AMBERHOME/dat/leap/cmd

ln -s leaprc.ff99SB leaprc

will provide a good default for many users; after this you could just invoke tleap or
xleap without any arguments, and it would automatically load the ff03 or ff99SB force
field. A leaprc file in the current directory overrides any other such files that might be
present in the search path.

(2) The first eight choices in the above table are for additive (non-polarizable) simulations;
you should use saveAmberParm (or saveAmberParmPert) to save the prmtop file, and
keep the default ipol=0 in sander or gibbs.

(3) The ff02 entries in the above table are for non-additive (polarizable) force fields. Use
saveAmberParmPol to save the prmtop file, and set ipol=1 in the sander input file. Note
that POL3 is a polarizable water model, so you need to use saveAmberParmPol for it as
well.

(4) The files above assume that nucleic acids are DNA, if not explicitly specified. Use the
files leaprc.rna.ff98, leaprc.rna.ff99, leaprc.rna.ff02 or leaprc.rna.ff02EP to make the
default RNA. If you have a mixture of DNA and RNA, you will need to edit your PDB
file, or use the loadPdbUsingSequence command in LEaP (see that chapter) in
order to specify which nucelotide is which.

(5) There is also a leaprc.gaff file, which sets you up for the "general" Amber force field.
This is primarily for use with Antechamber (see that chapter), and does not load any
topology files.

(6) The leaprc.ff86 file gives the 1986 all-atom parameters; Amber no longer directly sup-
ports the 1984 united atom parameter set. Instead users interested in simulations in united
atom should use the 2003 united-atom parameter set, which can be invoked by
leaprc.ff03ua.

(7) Our experience with generalized Born simulations is mainly with ff99 or ff03; the current
GB models are not compatible with polarizable force fields. Replacing explicit water
with a GB model is equivalent to specifying a different force field, and users should be
aw are that none of the GB options (in Amber or elsewhere) is as "mature" as simulations
with explicit solvent; user discretion is advised! For example, it was shown that salt
bridges are too strong in some of these models [21] and some of them provide secondary
structure distributions that differ significantly from those obtained using the same protein
parameters in explicit solvent, with GB having too much α -helix present [22].

2.3. The AMOEBA potentials
The amoeba force field for proteins, ions, organic solvents and water, dev eloped by Ponder

and Ren [8,9] are available in sander. This force field is specified by setting do_amoeba to 1 in
the sander input file. Setting up the system is done in a special way, described in Chapter 6.
Users will need to obtain Tinker, version 4.3 in order to obtain needed parameter files and utili-
ties. See Chapter 6 for more information.

2.4. The Duan et al. (2003) force field
The ff03 force field [23,24] is a modified version of ff99 (described below). The main

changes are that charges are now derived from quantum calculations that use a continuum

3/3/06

Force fields Page 19

dielectric to mimic solvent polarization, and that the φ and ψ backbone torsions for proteins are
modified, with the effect of decreasing the preference for helical configurations. The changes are
just for proteins; nucleic acid parameters are the same as in ff99.

2.5. The Yang et al. (2003) united-atom force field
The ff03ua force field [6] is the united-atom counterpart of ff03. This force field uses the

same charging scheme as ff03. In this force field, the aliphatic hydrogen atoms on all amino acid
sidechains are united to their corresponding carbon atoms. The aliphatic hydrogen atoms on all
alpha carbon atoms are still represented explicitly to minimize the impact of the united-atom
approximation on protein backbone conformations. In addition, aromatic hydrogens are also
explicitedly represented. Van der Waals parameters of the united carbon atoms are refitted based
on solvation free energy calculations. Due to the use of all-atom protein backbone, the φ and ψ
backbone torsions from ff03 are left unchanged. The sidechain torsions involving united carbon
atoms are all refitted. In this parameter set, nucleic acid parameters are still in all atom and kept
the same as in ff99.

2.6. 1999 and 2002 force fields and recent updates to these parameters
The ff99 force field [25] points toward a common force field for proteins for "general"

organic and bioorganic systems. The atom types are mostly those of Cornell et al. (see below),
but changes have been made in many torsional parameters, and this parameterization supports
both additive and non-additive (polarizable) force fields. The topology and coordinate files for
the small molecule test cases used in the development of this force field are in the parm99_lib
subdirectory. The ff99 force field uses these parameters, along with the topologies and charges
from the Cornell et al. force field, to create an all-atom nonpolarizable force field for proteins and
nucleic acids.

Several groups have noticed that ff99 (and ff94 as well) do not provide a good energy bal-
ance between helical and extended regions of peptide and protein backbones. Another problem is
that many of the ff94 variants had incorrect treatment of glycine backbone parameters. ff99SB is
the recent attempt to improve this behavior, and was developed in the Simmerling group [26]. It
presents a careful reparametrization of the backbone torsion terms in ff99 and achieves much bet-
ter balance of four basic secondary structure elements (PPII, β , α L, and α R). A detailed explana-

tion of the parametrization as well as an extensive comparison with many other variants of fixed
charge Amber forcefields is given in the reference above. Briefly, dihedral term parameters were
obtained through fitting the energies of multiple conformations of glycine and alanine tetrapep-
tides to high-level ab initio QM calculations. We hav e shown that this force field provides much
improved proportions of helical versus extended structures. In addition, it corrected the glycine
sampling and should also perform well for β -turn structures, two things which were especially
problematic with most previous Amber force field variants. In order to use ff99SB, issue "source
leaprc.ff99SB" at the start of your LEaP session.

An alternative is to simply zero out the torsional terms for the φ and ψ backbone angles
[27]. Another alteration along the same lines has been developed by Sorin and Pande [28], and is
implemented in the frcmod.ff99SP file. Research in this area is ongoing, and users interested in
peptide and protein folding are urged to keep abreast of the current literature.

The ff02 force field is a polarizable variant of ff99. Here, the charges were determined at
the B3LYP/cc-pVTZ//HF/6-31G* level, and hence are more like "gas-phase" charges. During
charge fitting the correction for intramolecular self polarization has been included [29]. Bond

3/3/06

Force fields Page 20

polarization arising from interactions with a condensed phase environment are achieved through
polarizable dipoles attached to the atoms. These are determined from isotropic atomic polariz-
abilities assigned to each atom, taken from experimental work of Applequist. The dipoles can
either be determined at each step through an iterative scheme, or can be treated as additional
dynamical variables, and propagated through dynamics along with the atomic positions, in a man-
ner analogous Car-Parinello dynamics. Derivation of the polarizable force field required only
minor changes in dihedral terms and a few modification of the van der Waals parameters.

Recently, a set up updated torsion parameters has been developed for the ff02 polarizable
force field [30]. These are available in the frcmod.ff02pol.r1 file.

The user also has a choice to use the polarizable force field with extra points on which addi-
tional point charges are located; this is called ff02EP. The additional points are located on elec-
tron donating atoms (e.g. O,N,S), which mimic the presence of electron lone pairs [31]. For
nucleic acids we chose to use extra interacting points only on nucleic acid bases and not on sugars
or phosphate groups.

There is not (yet) a full published description of this, but a good deal of preliminary work
on small molecules is available [29,32]. Beyond small molecules, our initial tests have focussed
on small proteins and double helical oligonucleotides, in additive TIP3P water solution. Such a
simulation model, (using a polarizable solute in a non-polarizable solvent) gains some of the
advantages of polarization at only a small extra cost, compared to a standard force field model. In
particular, the polarizable force field appears better suited to reproduce intermolecular interac-
tions and directionality of H-bonding in biological systems than the additive force field. Initial
tests show ff02EP behaves slightly better than ff02, but it is not yet clear how significant or
widespread these differences will be.

The gaff.dat ("general Amber force field") is yet a further step towards general purpose
organic molecules [7]. It is primarily used in conjunction with the antechamber program, and
users should consult that chapter for more information.

2.7. The Cornell et al. (1994) force field
Contained in ff94 are parameters from the so-called "second generation" force field devel-

oped in the Kollman group in the early 1990’s [33]. These parameters are especially derived for
solvated systems, and when used with an appropriate 1-4 electrostatic scale factor, hav e been
shown to perform well at modeling many org anic molecules. The parameters in parm94.dat omit
the hydrogen bonding terms of earlier force fields. This is an all-atom force field; no united-atom
counterpart is provided. 1-4 electrostatic interactions are scaled by 1.2 instead of the value of 2.0
that had been used in earlier force fields.

Charges were derived using Hartree-Fock theory with the 6-31G* basis set, because this
exaggerates the dipole moment of most residues by 10-20%. It thus "builds in" the amount of
polarization which would be expected in aqueous solution. This is necessary for carrying out
condensed phase simulations with an effective two-body force field which does not include
explicit polarization. The charge-fitting procedure is described in Chapter 12.2.

The ff96 force field [34] differs from parm94.dat in that the torsions for φ and ψ have been
modified in response to ab initio calculations [35] which showed that the energy difference
between conformations were quite different than calculated by Cornell et al. (using parm94.dat).
To create parm96.dat, common V1 and V2 parameters were used for φ and ψ , which were empiri-

cally adjusted to reproduce the energy difference between extended and constrained alpha helical
energies for the alanine tetrapeptide. This led to a significant improvement between molecular

3/3/06

Force fields Page 21

mechanical and quantum mechanical relative energies for the remaining members of the set of
tetrapeptides studied by Beachy et al. Users should be aware that parm96.dat has not been as
extensively used as parm94.dat, and that it almost certainly has its own biases and idiosyncrasies,
including strong bias favoring extended β conformations [26,36,37].

The ff98 force field [38] differs from parm94.dat in torsion angle parameters involving the
glycosidic torsion in nucleic acids. These serve to improve the predicted helical repeat and sugar
pucker profiles.

2.8. The Weiner et al. (1984,1986) force fields
The ff86 parameters are described in early papers from the Kollman and Case groups

[39,40]. [The "parm91" designation is somewhat unfortunate: this file is really only a corrected
version of the parameters described in the 1984 and 1986 papers listed above.] These parameters
are not generally recommended any more, but may still be useful for vacuum simulations of
nucleic acids and proteins using a distance-dependent dielectric, or for comparisons to earlier
work. The material in parm91X.dat is the parameter set distributed with Amber 4.0. The STUB
nonbonded set has been copied from parmuni.dat; these sets of parameters are appropriate for
united atom calculations using the "larger" carbon radii referred to in the "note added in proof" of
the 1984 JACS paper. If these values are used for a united atom calculation, the parameter scnb
should be set to 8.0; for all-atom calculations use 2.0. The scee parameter should be set to 2.0 for
both united atom and all-atom variants. Note that the default value for scee is sander is now 1.2
(the value for 1994 and later force fields; users must explicitly change this in their inputs for the
earlier force fields.

parm91X.dat is not recommended. However, for historical completeness a number of terms
in the non-bonded list of parm91X.dat should be noted. The non-bonded terms for I(iodine),
CU(copper), and MG(magnesium) have not been carefully calibrated, but are given as approxi-
mate values. In the STUB set of non-bonded parameters, we have included parameters for a large
hydrated monovalent cation (IP) that represent work by Singh et al. [41] on large hydrated coun-
terions for DNA. Similar values are included for a hydrated anion (IM).

The non-bonded potentials for hydrogen-bond pairs in ff86 use a Lennard-Jones 10-12
potential. If you want to run sander with ff86 then you will need to recompile, adding
-DHAS_10_12 to the Fortran preprocessor flags; see Chapter 1.3.2.

2.9. Glycam-04 force field for carbohydrates
As in previous versions of Glycam, the parameters are intended for explicitly solvated MD

simulations of carbohydrates. Also, as in previous versions, the van der Waals parameters were
borrowed from the Parm94 force field. However, in sev eral other areas the development of the
Glycam-04 parameters differs significantly from earlier versions of Glycam. This parameter set
is unique from the other standard AMBER parameters in that is has been derived for use without
the need for scaling 1-4 non-bonded interactions. Other major differences from earlier Glycam
versions relate to the partial charge placements. Throughout the development of the parameters
the 1-4 electrostatic (SCEE) and non-bonded (SCNB) scaling factors were set to unity. We hav e
shown that this is essential in order to properly treat internal hydrogen bonds, particularly those
associated with the hydroxymethyl group. With 1-4 scaling, it was not possible to correctly
reproduce the rotamer populations for the C5-C6 bond. For studying carbohydrate-protein inter-
actions, we suggest that the SCEE and SCNB scaling factors be set to the appropriate value
according to the protein force field that is chosen. While this may degrade the accuracy of the
rotational populations obtained with Glycam, it should not interfere with the stability or structure

3/3/06

Force fields Page 22

of protein-bound carbohydrates. Details of how the new parameters were developed are
described elsewhere [42-44].

As in previous versions of Glycam, the atomic partial charges were determined using the
RESP formalism, with a weighting factor of 0.01 from a wav efunction computed at the
HF/6-31G(d) level. However, to reduce artifactual fluctuations in the charges on saturated carbon
atoms, charges on aliphatic hydrogens (types HC, H1, H2, & H3) were set to zero while the par-
tial charges were fit to the remaining atoms. Due to the rotational freedom of hydroxyl groups,
partial atomic charges for each sugar were determined by averaging charges obtained from 100
conformations selected evenly from 50 ns solvated MD simulations of the methyl glycoside of
each monosaccharide, thus yielding an ensemble averaged charge set.

In order to extend glycam04 to simulations employing the TIP-5P water model, an addi-
tional set of carbohydrate prep files has been derived, in which lone pairs (or extra points, EPs)
have been incorporated on the oxygen atoms. The optimal O-EP distance was located by obtain-
ing the best fit to the HF/6-31g(d) electrostatic potential. In general, the best fit to the quantum
potential coincided with a negligible charge on the oxygen nuclear position. The optimal O-EP
distance for an sp3 oxygen atom was found to be 0.70Å; for an sp2 oxygen atom a shorter length
of 0.45Å was optimal. When applied to water, this approach to locating the lone pair positions
and assigning the partial charges yielded a model that was essentially indistinguishable from
TIP-5P. Therefore, we believe this model is well suited for use with TIP-5P.

All valence parameters were determined by fitting to data computed at the
B3LYP/6-31++G(2d,2p)//HF/6-31G(d) level of theory. This level was selected due to its inher-
ently low lev el of basis set superposition error, which manifests itself in a reduction of rotational
barrier heights. A major difference from earlier versions of Glycam is that here each parameter
term was explicitly parameterized, using a molecular development suite of more than 75
molecules. The parameter test suite included carbohydrates and numerous smaller molecular
fragments. Further, in this version of Glycam we have eliminated the atom types AC, EC, and
OG. However, to avoid potential conflicts with the CT atom type in the protein parameters, we
have employed a new atom type for tetrahedral carbons called CG (C-Glycam) in order to keep
the Glycam parameters specific for carbohydrates.

The latest release of the Glycam parameters prep files can always be obtained from the
Woods group at http://glycam.ccrc.uga.edu.

2.9.1. Notes on the naming of Prep files
Due to the structural diversity of carbohydrates, the prep file nomenclature requires some

explanation. The naming of prep files is relatively straightforward. However, to be limited to a
three-letter residue name requires some compromises in clarity. Nev ertheless, an orthogonal set
is presented that encodes the following details: core monosaccharide name (glucose, mannose,
etc.), anomericity (α or β), configuration (D or L), sugar linkage position (2, 3, 4, etc.) and ring
size (pyranose or furanose).

Here are some examples of pyranoses (linked at the 2-position):

3/3/06

Force fields Page 23

-2)-α -D-mannose prep file name: 2madp.prep Residue name: 2MA (A = α)

-2)-β -D-mannose prep file name: 2mbdp.prep Residue name: 2MB (B = β)

-2)-α -L-mannose prep file name: 2malp.prep Residue name: M2A (mirror image of 2MA)

-2)-β -L-mannose prep file name: 2mblp.prep Residue name: M2B (mirror image of 2MA)

Here are some examples of furanoses (linked at the 2-position):

-2)-α -D-xylose prep file name: 2xadf.prep Residue name 2XD (D = α , as in Down)

-2)-β -D-xylose prep file name: 2xbdf.prep Residue name 2XU (U = β , as in Up)

-2)-α -L-xylose prep file name: 2xalf.prep Residue name X2D (mirror image of 2XD)

-2)-β -L-xylose prep file name: 2xblf.prep Residue name X2U (mirror image of 2XU)

Finally, here are some examples of terminal residues (thought of as linked at the 1-position):

α -D-mannopyranose-(1- prep file name: 1madp.prep Residue name: 1MA

α -D-xylofuranose-(1- prep file name: 1xadf.prep Residue name 1XD

2.9.2. Carbohydrate Naming Convention in Glycam-04
Here are the one-letter codes that form the core of the Glycam residue names for carbohy-

drates. (In the future we may employ lowercase letters to define L-sugars. There are also numer-
ous complex residues that will not fit the rule for simple monosaccharides.)

3/3/06

Force fields Page 24

One-letter codes for carbohydrates
Carbohydrate One-letter Common Abbr. Classification

Arabinose A Ara Pentose
Lyxose D Lyx Pentose
Ribose R Rib Pentose
Xylose X Xyl Pentose
Allose N All Hexose
Altrose E Alt Hexose
Galactose L Gal Hexose
Glucose G Glc Hexose
Gulose K Gul Hexose
Idose I Gul Hexose

Mannose M Man Hexose
Talose T Tal Hexose
Fructose C Fru Hexulose
Psicose P Psi Hexulose
Sorbose B Sor Hexulose
Tagatose J Tag Hexulose
Fucose F Fuc 6-DeoxyHexose

Quinovose Q Qui 6-DeoxyHexose
Rhamnose H Rha 6-DeoxyHexose

Galacturonic Acid O GalA Hexuronic Acid
Glucuronic Acid Z GlcA Hexuronic Acid
Iduronic Acida U IdoA Hexuronic Acid

N-Acetylgalactosamine V GalNac HexNAc
N-Acetylglucosamine Y GlcNAc HexNAc
N-Acetylmannosamine W ManNAc HexNAc

N-Acetyl-neuraminic acid S NeuNAc, Neu5Ac 9-Carbon Acid
KDN KN KDN 8-Carbon Acid
KDO KO KDO 8-Carbon Acid

N-Glycolyl-neuraminic acid SG NeuNGc, Neu5Gc 9-Carbon Acid

3/3/06

Force fields Page 25

The following tables give details of choosing residue names.

Linkage position and anomeric configuration in D-hexopyranoses
α -D-Glucose β -D-Mannose

Linkage Position Prep File Prefix Residue Name Prep File Prefix Residue Name

Terminal 1GADP 1GA 1MBDP 1MB
2- 2GADP 2GA 2MBDP 2MB
3- 3GADP 3GA 3MBDP 3MB
4- 4GADP 4GA 4MBDP 4MB
6- 6GADP 6GA 6MBDP 6MB
2,3- 23GADP ZGA 23MBDP ZMB
2,4- 24GADP YGA 24MBDP YMB
2,6- 26GADP XGA 26MBDP XMB
3,4- 34GADP WGA 34MBDP WMB
3,6- 36GADP VGA 36MBDP VMB
4,6- 46GADP UGA 46MBDP UMB
2,3,4- 234GADP TGA 234MBDP TMB
2,3,6- 236GADP SGA 236MBDP SMB
2,4,6- 246GADP RGA 246MBDP RMB
3,4,6- 346GADP QGA 346MBDP QMB
2,3,4,6- 2346GADP PGA 2346MBDP PMB

Linkage position and anomeric configuration in L-hexopyranoses
α -L-Glucose β -L-Mannose

Linkage Position Prep File Prefix Residue Name Prep File Prefix Residue Name

Terminal 1GALP G1A 1MBLP M1B
2- 2GALP G2A 2MBLP M2B
3- 3GALP G3A 3MBLP M3B
4- 4GALP G4A 4MBLP M4B
6- 6GALP G6A 6MBLP M6B
2,3- 23GALP GZA 23MBLP MZB
2,4- 24GALP GYA 24MBLP MYB
2,6- 26GALP GXA 26MBLP MXB
3,4- 34GALP GWA 34MBLP MWB
3,6- 36GALP GVA 36MBLP MVB
4,6- 46GALP GUA 46MBLP MUB
2,3,4- 234GALP GTA 234MBLP MTB
2,3,6- 236GALP GSA 236MBLP MSB
2,4,6- 246GALP GRA 246MBLP MRB
3,4,6- 346GALP GQA 346MBLP MQB
2,3,4,6- 2346GALP GPA 2346MBLP MPB

A = α , B = β ; The D-configuration (mirror image of the L-) is indicated in the three letter residue
name by reversing the first two letters.

3/3/06

Force fields Page 26

Linkage position and anomeric configuration in D-pentofuranoses
α -D-Arabinose β -D-Xylose

Linkage Position Prep File Prefix Residue Name Prep File Prefix Residue Name

Terminal 1AADF 1AD 1XBDF 1XU
2- 2AADF 2AD 2XBDF 2XU
3- 3AADF 3AD 3XBDF 3XU
4- 4AADF 4AD 4XBDF 4XU
2,3- 23AADF ZAD 23XBDF ZXU
2,4- 24AADF YAD 24XBDF YXU
3,4- 34AADF WAD 34XBDF WXU
2,3,4- 234AADF TAD 234XBDF TXU

Linkage position and anomeric configuration in L-pentofuranoses
α -L-Arabinose β -L-Xylose

Linkage Position Prep File Prefix Residue Name Prep File Prefix Residue Name

Terminal 1AALF A1D 1XBLF X1U
2- 2AALF A2D 2XBLF X2U
3- 3AALF A3D 3XBLF X3U
4- 4AALF A4D 4XBLF X4U
2,3- 23AALF AZD 23XBLF XZU
2,4- 24AALF AYD 24XBLF XYU
3,4- 34AALF AWD 34XBLF XWU
2,3,4- 234AALF ATD 234XBLF XTU

Linkage position in exceptional cases
Carbohydrate Linkage Position Prep File Prefix Residue Name

α -D-Sialic Acid Terminal 1SA 1SA
7- 7SA 7SA
8- 8SA 8SA
9- 9SA 9SA

α -D-N-Acetylglucosamine Terminal YA YA
3- 3YA 3YA
4- 4YA 4YA
6- 6YA 6YA
3,4- 34YA WYAa
3,6- 36YA VYA
4,6- 46YA UYA
3,4,6- 346YA RYA

(The single letter specification of linkage position follows the pattern of the earlier tables.)

3/3/06

Force fields Page 27

2.9.3. Building a polysaccharide in LEaP
Here is an example of how to construct a somewhat complex polysaccharide, using the gly-

cam04 parameters:

logFile leap.log

#

#

Making Branched Carbohydrates

#

In general, the head atom is set to C1 in each sugar, where the tail atom

varies depending on the sugar linkage. For all sugars, the tail atom is

specified as the glycosidic oxygen with the largest atomid, i.e. for the

2,3,4, linked sugars the tail atoms would be O4. Therefore, it it possible

to build the longest chain according to this convention and then connect

the branched portions. Simply changing the tail atom enables a different

connection point for the unit, which can then be utilized to sequence to

any branched residue/s.

#

#

Example: Man9

#

Mana1 - 2Mana1 \

3

Mana1

6 \

Mana1 - 2Mana1 / 6

ManB-OMe

3

Mana1 - 2Mana1 - 2Mana1 /

#

#

First, we must load the necessary parameters and prep files

source leaprc.glycam04

Find the longest chain and use the sequence command to build it

(See the manual for naming conventions)

part1 = sequence { OME VMB VMA 2MA 1MA }

Now set the tail atom of part1 to O3 of VMB

set part1 tail part1.2.9

Join the first branch to the long chain

part2 = sequence { part1 VMA 2MA 1MA }

Set the tail atom of part2 to O3 of VMA

set part2 tail part2.6.19

Add the last branch

man9 = sequence { part2 2MA 1MA }

3/3/06

Force fields Page 28

The basic structure has been built, but it clearly does not have the optimal

glycosidic torsion angles.

#

Set the psi(1-6) torsion to 180 (C1-O6-C6-C5)

impose man9 { 2 3 4 } { { C5 C6 O6 C1 180.0 } }

Set the omega angle of 6-linked sugars to 60.0 (O5-C5-C6-O6)

impose man9 { 2 3 } {{ O6 C6 C5 O5 60.0 } }

Set the phi angle of all a-linked (not 1-6 linked) sugars to -60.0

impose man9 { 4 5 6 7 8 9 10 } { { H1 C1 O2 C2 -60.0 } }

impose man9 { 6 2 } { { H1 C1 O3 C3 -60.0 } }

impose man9 { 9 3 } { { H1 C1 O3 C3 -60.0 } }

Set the psi angle of all sugars to 0.0

impose man9 { 4 5 6 7 8 9 10 } { { C1 O2 C2 H2 0.0 } }

impose man9 { 6 2 } { { C1 O3 C3 H3 0.0 } }

impose man9 { 9 3 } { { C1 O3 C3 H3 0.0 } }

Now we have a reasonable starting structure for AMBER min/md, but we need

to save a topology and coordinate file as well as a pdb for later use.

saveamberparm man9 man9.top man9.crd

savepdb man9 man9.pdb

quit

For more info visit the Glycam website www.glycam.ccrc.uga.edu

2.10. Ions
For alkali ions with TIP3P waters, we have provided the values of A° qvist [45], which are

adjusted for Amber’s nonbonded atom pair combining rules to give the same ion-OW potentials
as in the original (which were designed for SPC water); these values reproduce the first peak of
the radial distribution for ion-OW and the relative free energies of solvation in water of the vari-
ous ions. Note that these values would have to be changed if a water model other than TIP3P
were to be used. These potentials may also need modification if absolute free energies of solva-
tion are important [46].

2.11. Solvent models
Amber now provides direct support for several water models. The default water model is

TIP3P [47]. This model will be used for residues with names HOH or WAT . If you want to use
other water models, execute the following leap commands after loading your leaprc file:

WAT = PL3 (residues named WAT in pdb file will be POL3)

loadAmberParams frcmod.pol3 (sets the HW,OW parameters to POL3)

(The above is obviously for the POL3 model.) The solvents.lib file contains TIP3P [47], TIP4P
[47,48], TIP5P [49], POL3 [50] and SPC/E [51] models for water; these are called TP3, T4P, T5P,
PL3 and SPC, respectively. By default, the residue name in the prmtop file will be WAT , regard-
less of which water model is used. If you want to change this (for example, to keep track of

3/3/06

Force fields Page 29

which water model you are using), you can change the residue name to whatever you like. For
example,

WAT = TP4

set WAT.1 name "TP4"

would make a special label in PDB and prtmop files for TIP4P water. Note that Brookhaven for-
mat files allow at most three characters for the residue label.

In addition, non-polarizable models for the organic solvents methanol, chloroform and N-
methylacetamide are provided, along with a box for an 8M urea-water mixture. The input files
for a single molecule are in amber9/dat/leap/prep, and the corresponding frcmod files are in
amber9/dat/leap/parm. Pre-equilibrated boxes are in amber9/dat/leap/lib. For example, to sol-
vate a simple peptide in methanol, you could do the following:

source leaprc.ff99 (get a standard force field)

loadAmberParams frcmod.meoh (get methanol parameters)

peptide = sequence { ACE VAL NME } (construct a simple peptide)

solvateBox peptide MEOHBOX 12.0 0.8 (solvate the peptide with meoh)

saveAmberParm peptide prmtop prmcrd

quit

Similar commands will work for other solvent models.

3/3/06

LEaP Introduction Page 30

3. LEaP

3.1. Introduction
LEaP is the generic name given to the programs teLeap and xaLeap, which are generally

run via the tleap and xleap shell scripts. These two programs share a common command lan-
guage but the xleap program has been enhanced through the addition of an X-windows graphical
user interface. The name LEaP is an acronym constructed from the names of the older AMBER
software modules it replaces: link, edit, and parm. Thus, LEaP can be used to prepare input for
the AMBER molecular mechanics programs.

Both tleap and xleap are written in ANSI C; the former does not support graphics and there-
fore, it will run in a text window or from a script. The xleap script is meant to run on any
machine that supports X-windows (Version 11 Revision 4 and latter versions); it does all of its
graphics manipulations in generic X-windows. It does not depend on any system-dependent
graphics to do 3D transformations or page-flipping. All of the user interface was written using
David E. Smyth’s Widget Creation Library (Wcl-1.05). This library is included in the LEaP dis-
tribution, as is the Xraw 3D widget set by Vladimir Romanovski (modeled on the ATHENA 3D
widget set by Kaleb Keithley).

Using tleap, the user can:

Read AMBER PREP input files

Read AMBER PARM format parameter sets

Read and write Object File Format files (OFF)

Read and write PDB files

Read single residue Mol2 files

Construct new residues and molecules using simple commands

Link together residues and create nonbonded complexes of molecules

Place counterions around a molecule

Solvate molecules in arbitrary solvents

Modify internal coordinates within a molecule

Generate files that contain topology and parameters for AMBER.

In addition, with xleap the user can:

Access commands using a simple point and click interface

Draw new residues and molecules in a graphical environment

View structures graphically

Graphically dock molecules

Modify the properties of atoms, residues, and molecules using a

spreadsheet editor

Input or alter molecular mechanics parameters using a spreadsheet editor.

3.2. Concepts
In order to effectively use LEaP it is necessary to understand the philosophy behind the pro-

gram, especially the concepts of LEaP commands, variables, and objects. In addition to exploring

3/3/06

LEaP Concepts Page 31

these concepts, this section also addresses the use of external files and libraries with the program.

3.2.1. Commands
The heart of LEaP is a command-line interface that accepts text commands which direct the

program to perform operations on objects. All LEaP commands have one of the following two
forms:

command argument1 argument2 argument3 ...

variable = command argument1 argument2 ...

For example:

edit ALA

trypsin = loadPdb trypsin.pdb

Each command is followed by zero or more arguments that are separated by whitespace. Some
commands return objects which are then associated with a variable using an assignment (=) state-
ment. Each command acts upon its arguments, and some of the commands modify their argu-
ments’ contents. The commands themselves are case- insensitive.

The arguments in the command text may be objects such as NUMBERs, STRINGs, or
LISTs or they may be variables. These two subjects are discussed next.

3.2.2. Variables
A variable is a handle for accessing an object. A variable name can be any alphanumeric

string whose first character is an alphabetic character. (Alphanumeric means that the characters
of the name may be letters, numbers, or special symbols such as "*". LEaP commands should not
be used as variable names. Variable names are case-sensitive: "ARG" and "arg" are different vari-
ables. Variables are associated with objects using an assignment statement not unlike regular
computer languages such as Fortran or C.

mole = 6.02E23

MOLE = 6.02E23

myName = "Joe Smith"

listOf7Numbers = { 1.2 2.3 3.4 4.5 6 7 8 }

LEaP maintains a list of variables that are currently defined and this list can be displayed using
the list command. The contents of a variable can be printed using the desc command.

3.2.3. Objects
The object is the fundamental entity in LEaP. Objects range from the simple objects NUM-

BERs and STRINGs to the complex objects UNITs, RESIDUEs, and ATOMs. Complex objects
have properties that can be altered using the set command and some complex objects can con-
tain other objects. For example, RESIDUEs are complex objects that can contain ATOMs and
have the properties: residue name, connect atoms, and residue type.

NUMBERs are simple objects and they are identical to double precision variables in Fortran and
double variables in C.

3/3/06

LEaP Concepts Page 32

STRINGs are simple objects that are identical to character arrays in C and similar to character
strings in Fortran. STRINGs are represented by sequences of characters which may be delimited
by double quote characters. Example strings are:

"Hello there"

"String with a "" (quote) character"

"Strings contain letters and numbers:1231232"

LISTs are composed of sequences of other objects delimited by LIST open and close characters.
The LIST open character is an open curly bracket ({) and the LIST close character is a close curly
bracket (}). LISTs can contain other LISTs and be nested arbitrarily deep. Example LISTs are:

{ 1 2 3 4 }

{ 1.2 "string" }

{ 1 2 3 { 1 2 } { 3 4 } }

LISTs are used by many commands to provide a more flexible way of passing data to the com-
mands. The zMatrix command has two arguments, one of which is a LIST of LISTs where
each subLIST contains between three and eight objects.

PARMSETs are objects that contain bond, angle, torsion, and nonbond parameters for AMBER
force field calculations. They are normally loaded from e.g. parm94.dat and frcmod files.

AT OMs are complex objects that do not contain any other objects. The ATOM object is similar
to the chemical concept of atoms. Thus, it is a single entity that may be bonded to other ATOMs
and it may be used as a building block for creating molecules. AT OMs have many properties that
can be changed using the set command. These properties are defined below.

name
This is a case-sensitive STRING property and it is the ATOM’s name. The
names for all ATOMs in a RESIDUE should be unique. The name has no rele-
vance to molecular mechanics force field parameters; it is chosen arbitrarily as a
means to identify ATOMs. Ideally, the name should correspond to the PDB stan-
dard, being 3 characters long except for hydrogens, which can have an extra digit
as a 4th character.

type
This is a STRING property. It defines the AMBER force field atom type. It is
important that the character case match the canonical type definition used in the
appropriate "parm.dat" or "frcmod" file. For smooth operation, all atom types
need to have element and hybridization defined by the addAtomTypes com-
mand. The standard AMBER force field atom types are added by the default
"leaprc" file.

charge
The charge property is a NUMBER that represents the ATOM’s electrostatic
point charge to be used in a molecular mechanics force field.

element
The atomic element provides a simpler description of the atom than the type,
and is used only for LEaP’s internal purposes (typically when force field informa-
tion is not available). The element names correspond to standard nomenclature;
the character "?" is used for special cases.

3/3/06

LEaP Concepts Page 33

position
This property is a LIST of NUMBERs. The LIST must contain three values: the
(X, Y, Z) Cartesian coordinates of the ATOM.

RESIDUEs are complex objects that contain ATOMs. RESIDUEs are collections of ATOMs,
and are either molecules (e.g. formaldehyde) or are linked together to form molecules (e.g. amino
acid monomers). RESIDUEs have sev eral properties that can be changed using the set com-
mand. (Note that database RESIDUEs are each contained within a UNIT having the same name;
the residue GLY is referred to as GLY.1 when setting properties. When two of these single-UNIT
residues are joined, the result is a single UNIT containing the two RESIDUEs.)

One property of RESIDUEs is connection ATOMs. Connection AT OMs are ATOMs that
are used to make linkages between RESIDUEs. For example, in order to create a protein, the N-
terminus of one amino acid residue must be linked to the C-terminus of the next residue. This
linkage can be made within LEaP by setting the N ATOM to be a connection ATOM at the N-ter-
minus and the C ATOM to be a connection ATOM at the C-terminus. As another example, two
CYX amino acid residues may form a disulfide bridge by crosslinking a connection atom on each
residue.

There are several properties of RESIDUEs that can be modified using the set command.
The properties are described below:

connect0
This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUE’s connect0 AT OM is
usually defined as the UNIT’s head AT OM. (This is how the standard library
UNITs are defined.) For amino acids, the convention is to make the N-terminal
nitrogen the connect0 AT OM.

connect1 This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUE’s connect1 AT OM is usu-
ally defined as the UNIT’s tail AT OM. (This is done in the standard library
UNITs.) For amino acids, the convention is to make the C-terminal oxygen the
connect1 AT OM.

connect2 This is an ATOM property which defines an ATOM that can be used in making
links to other RESIDUEs. In amino acids, the convention is that this is the
AT OM to which disulfide bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Currently,
it can have one of the following values: "undefined", "solvent", "pro-
tein", "nucleic", or "saccharide". Some of the LEaP commands
behave in different ways depending on the type of a residue. For example, the
solvate commands require that the solvent residues be of type "solvent". It is
important that the proper character case be used when defining this property.

name The RESIDUE name is a STRING property. It is important that the proper char-
acter case be used when defining this property.

UNITs are the most complex objects within LEaP, and the most important. UNITs, when paired
with one or more PARMSETs, contain all of the information required to perform a calculation
using AMBER. UNITs have the following properties which can be changed using the set com-
mand:

head

3/3/06

LEaP Concepts Page 34

tail These define the ATOMs within the UNIT that are connected when UNITs are
joined together using the sequence command or when UNITs are joined
together with the PDB or PREP file reading commands. The tail AT OM of one
UNIT is connected to the head AT OM of the next UNIT in any sequence. (Note:
a "TER card" in a PDB file causes a new UNIT to be started.)

box This property can either be null, a NUMBER, or a LIST. The property defines
the bounding box of the UNIT. If it is defined as null then no bounding box is
defined. If the value is a single NUMBER then the bounding box will be defined
to be a cube with each side being NUMBER of angstroms across. If the value is
a LIST then it must be a LIST containing three numbers, the lengths of the three
sides of the bounding box.

cap This property can either be null or a LIST. The property defines the solvent
cap of the UNIT. If it is defined as null then no solvent cap is defined. If the
value is a LIST then it must contain four numbers, the first three define the Carte-
sian coordinates (X, Y, Z) of the origin of the solvent cap in angstroms, the fourth
NUMBER defines the radius of the solvent cap in angstroms.

Examples of setting the above properties are:

set dipeptide head dipeptide.1.N

set dipeptide box { 5.0 10.0 15.0 }

set dipeptide cap { 15.0 10.0 5.0 8.0 }

The first example makes the amide nitrogen in the first RESIDUE within "dipeptide" the head
AT OM. The second example places a rectangular bounding box around the origin with the (X, Y,
Z) dimensions of (5.0, 10.0, 15.0) in angstroms. The third example defines a solvent cap cen-
tered at (15.0, 10.0, 5.0) angstroms with a radius of 8.0 Å. Note: the "set cap" command does
not actually solvate, it just sets an attribute. See the solvateCap command for a more practical
case.

UNITs are complex objects that can contain RESIDUEs and ATOMs. UNITs can be created
using the createUnit command and modified using the set commands. The contents of a
UNIT can be modified using the add and remove commands. There is a loose hierarchy of
complex objects and what they are allowed to contain. The hierarchy is as follows:

• UNITs can contain RESIDUEs and ATOMs.

• RESIDUEs can contain ATOMs.

The hierarchy is loose because it does not forbid UNITs from containing ATOMs directly. How-
ev er, the convention that has evolved within LEaP is to have UNITs directly contain RESIDUEs
which directly contain ATOMs.

Objects that are contained within other objects can be accessed using dot "." notation. An exam-
ple would be a UNIT which describes a dipeptide ALA-PHE. The UNIT contains two RESIDUEs
each of which contain several ATOMs. If the UNIT is referenced (named) by the variable
dipeptide, then the RESIDUE named ALA can be accessed in two ways. The user may type
one of the following commands to display the contents of the RESIDUE:

desc dipeptide.ALA

desc dipeptide.1

3/3/06

LEaP Concepts Page 35

The first translates to "some RESIDUE named ALA within the UNIT named dipeptide". The
second form translates as "the RESIDUE with sequence number 1 within the UNIT named
dipeptide". The second form is more useful because every subobject within an object is guar-
anteed to have a unique sequence number. If the first form is used and there is more than one
RESIDUE with the name ALA, then an arbitrary residue with the name ALA is returned. To access
AT OMs within RESIDUEs, the notation to use is as follows:

desc dipeptide.1.CA

desc dipeptide.1.3

Assuming that the ATOM with the name CA has a sequence number 3, then both of the above
commands will print a description of the $alpha$−carbon of RESIDUE dipeptide.ALA or
dipeptide.1. The reader should keep in mind that dipeptide.1.CA is the ATOM, an
object, contained within the RESIDUE named ALA within the variable dipeptide. This means
that dipeptide.1.CA can be used as an argument to any command that requires an ATOM as
an argument. However dipeptide.1.CA is not a variable and cannot be used on the left hand
side of an assignment statement.

In order to further illustrate the concepts of UNITs, RESIDUEs, and ATOMs, we can exam-
ine the log file from a LEaP session. Part of this log file is printed below.

> loadOff all_amino94.lib

> desc GLY

UNIT name: GLY

Head atom: .R<GLY 1>.A<N 1>

Tail atom: .R<GLY 1>.A<C 6>

Contents:

R<GLY 1>

> desc GLY.1

RESIDUE name: GLY

RESIDUE sequence number: 1

RESIDUE PDB sequence number: 0

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 6>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA2 4>

A<HA3 5>

A<C 6>

A<O 7>

> desc GLY.1.3

ATOM

Normal Perturbed

Name: CA CA

Type: CT CT

3/3/06

LEaP Concepts Page 36

Charge: -0.025 0.000

Element: C (not affected by pert)

Atom position: 3.970048, 2.845795, 0.000000

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<GLY 1>.A<N 1> by a single bond.

Bonded to .R<GLY 1>.A<HA2 4> by a single bond.

Bonded to .R<GLY 1>.A<HA3 5> by a single bond.

Bonded to .R<GLY 1>.A<C 6> by a single bond.

In this example, command lines are prefaced by ">" and the LEaP program output has no such
character preface. The first command,

> loadOff all_amino94.lib

loads an OFF library containing amino acids. The second command,

> desc GLY

allows us to examine the contents of the amino acid UNIT, GLY. The UNIT contains one
RESIDUE which is named GLY and this RESIDUE is the first residue in the UNIT (R<GLY 1>).
In fact, it is also the only RESIDUE in the UNIT. The head and tail AT OMs of the UNIT are
defined as the N- and C-termini, respectively. The box and cap UNIT properties are defined as
null. If these latter two properties had values other than null, the information would have
been included in the output of the desc command.

The next command line in the session,

> desc GLY.1

enables us to examine the first residue in the GLY UNIT. This RESIDUE is named GLY and its
residue type is that of a protein. The connect0 AT OM (N) is the same as the UNITs’ head
AT OM and the connect1 AT OM (C) is the same as the UNITs’ tail AT OM. There are seven
AT OM objects contained within the RESIDUE GLY in the UNIT GLY.

Finally, let us look at one of the ATOMs in the GLY RESIDUE.

> desc GLY.1.3

The ATOM has a name (CA) that is unique among the atoms of the residue. The AMBER force
field atom type for CA is CT. The type of element, atomic point charge, and Cartesian coordi-
nates for this ATOM hav e been defined along with its bonding attributes. Other force field
parameters, such as the van der Waals well depth, are obtained from PARMSETs.

3.3. Starting LEaP

% xleap [−h] [−I dir] [−f file] [−s]

% tleap [−h] [-I dir] [−f file] [−s]

3/3/06

LEaP Concepts Page 37

The user may enter several options when starting the LEaP program. If the option "−h" is used
(e.g., xleap −h), then the program will print a list of start-up options and then exit. A directory
may be added to the program’s search path by using the option: "−I dir". This will cause the
program to search dir whenever a file is requested. If the user would like to execute LEaP com-
mands at start-up, they should use the option: "−f file". Finally, if the user enters the com-
mand option "−s", the "leaprc" file will not be executed at start-up.

A file called "leaprc" is executed as a script file at the start of the LEaP session unless the
user suppresses it with a command line option. Sample files are in $AMBERHOME/dat/leap/cmd,
and you may wish to copy one of these to become "your" default file. LEaP will look first for a
learpc file in the user’s current directory, then in any directories included with -I flags.

3.3.1. Verbosity
The verbosity command is used to control how much output LEaP displays to the user.

A verbosity level of 0 tells LEaP to print the minimum amount of information. A verbosity level
of 1 tells LEaP to print all information it can, and a verbosity level of 2 tells LEaP to print all
information and to display each line read from source files executed using the source com-
mand.

3.3.2. Log File
The command line interface allows the user to specify a log file that is used to log all input

and output within the command line environment. The log file is named using the logFile
command. The file has two purposes: to allow the user to see a complete record of operations per-
formed by LEaP, and to help recover from (and recreate) program crashes. Output from LEaP
commands is written to the log file at a verbosity level of 2 regardless of the verbosity level set by
the user using the verbosity command. Each line in the log file that was typed in by the user
begins with the two characters "> " (a greater-than sign followed by a space). This allows the
user to extract the commands typed into LEaP from the log file to create a script file that can be
executed using the source command. This provides a type of insurance against program
crashes by allowing the user to regenerate their interactive sessions. An example of a command
that works on UNIX systems and that will create a script to reenact a LEaP session is:

% cat LOGFILE | grep "ˆ> " | sed "s/ˆ> //" > SOURCEFILE.x

Note that changes via graphical and table interfaces (xleap) are not captured by command-line
traces.

3.4. Using LEaP
In this section, we describe how to use the tleap and xleap user interfaces. Strategies for

using LEaP in research are discussed in the subsequent section on using LEaP with AMBER.

tleap (terminal LEaP) is the non-graphical, command-line-only interface to LEaP. It has the
same functionality as the xleap main window (Universe Editor Command Window, described
below), and uses standard text control keys.

xleap is a windowing interface to LEaP. In addition to the command-line interface con-
tained in the Universe Editor window, it has a Unit Editor (graphical molecule editor), an Atom

3/3/06

LEaP Using LEap Page 38

Properties Editor, and a Parmset Editor. These editors are discussed in subsequent subsections.

3.4.1. Universe Editor
The window that first appears when the user starts xleap is called the Universe Editor. The

Universe Editor is the most basic way in which users can interact with xleap. It has two parts, the
"command window," which corresponds to the tleap command interface, and the "pulldown"
items above the window, which provide mouse-driven methods to generate specific commands for
the command window, either directly or via popped-up dialog boxes.

The items in the pulldowns allow the user to generate commands using dialog boxes. To dis-
play the "File" pulldown, for example, press the left mouse button on "File;" to select an item in
the pulldown, keep the button down, move the mouse to highlight the item, then release the
mouse button. A dialog box will then pop up containing fields which the user can fill in, and lists
from which values can be chosen; these will be used to generate commands for the command
window interface.

3.4.2. Unit Editor
When the user enters the edit command from the Universe Editor Command Window, the

Unit Editor will be displayed if the argument to the edit command is an existing UNIT or a
nonexistent (i.e. new) object. The Parmset Editor will be activated if the argument is a PARM-
SET. The Parmset Editor is discussed later in this subsection.

The Unit Editor has five parts. At the top of the window is a pulldown menu bar; below it is
a set of buttons titled "Manipulation" that define the mode of mouse activity in the graphics win-
dow, and below that, a list of elements to select for the manipulation "Draw" mode (selecting one
automatically selects "Draw" mode). Then comes the graphical molecule-editing ("viewing")
window itself, and at the very bottom a text window where status and errors are reported.

3.4.2.1. Unit Editor Menu Bar
The menu bar has three pulldowns: "Unit," "Edit," and "Display."

Unit The Unit pulldown contains commands affecting the whole UNIT.

"Check unit" − checks the UNIT in the viewing window for improbable bond
lengths, missing force field atom types, close nonbonded contacts, and a non-
integral and non-zero total charge. Information is printed in the text window at
the bottom of the Unit Editor.

"Calculate charge" − the total electrostatic charge for the UNIT is displayed in
the text window at the bottom of the Unit Editor.

"Build," "Add H & Build" − the coordinates of new atoms are adjusted according
to hybridization (inferred from bonds) and standard geometries. (See also the
Edit pulldown’s "Relax selection.) Newly-drawn ATOMs are marked as
"unbuilt" until they are marked otherwise by one of the Build commands or by
the Edit pulldown’s "Mark selection (un)built." The builder only builds coordi-
nates for unbuilt ATOMs. This allows users to draw molecules piecemeal and
make adjustments as they draw, without worrying that the builder is going to
undo their work. "Add H & Build" adds hydrogens to the ATOMs that do not
have a full valence and builds coordinates for the hydrogens and any other
AT OMs that are marked "unbuilt." The number of hydrogens added to each
AT OM is determined by the hybridization and element type of each ATOM.

3/3/06

LEaP Using LEap Page 39

"Import unit" − a selection window pops up for the user to incorporate a copy of
another unit in the current one. The imported unit will generally superimpose on
the existing one. (Hint: select all atoms in the current unit before doing this to
simplify dragging them apart using the Manipulation Move mode.)

"Close" − Exit the Editor.

Edit The Edit pulldown contains commands relating to the currently- selected ATOMs
in the viewer window. Selection is described below in the "Manipulation buttons"
section.

"Relax selection" − performs a limited energy minimization of all selected
AT OMs, leaving unselected ATOMs fixed in place, by relaxing strained bonds,
angles, and torsions. If atom types have been assigned and can be found in the
currently-loaded force field, force field parameters are used. If no types are avail-
able then default parameters are used that are based on ATOM hybridization.
This command invokes an iterative algorithm that can take some time to converge
for large systems. As the algorithm proceeds, the modified UNIT will be continu-
ously updated within the viewing window. The user can stop the process at any
time by placing the mouse pointer within the viewing window and typing con-
trol-C. Since only internal coordinates are energy minimized, steric overlap
can result.

"Edit selected atoms" − pops up an Atom Properties Editor, a tool for examin-
ing/setting the properties of the selected ATOMs. The Atom Properties Editor
allows the user to edit the ATOM names, types and charges in a convenient table
format. It is described in a separate subsection below.

"Flip chirality" This command inverts the chirality of all selected ATOMs. In
order for the chirality to be inverted, the ATOM cannot be in more than one ring.
The operation causes the lightest chains leaving the ATOM to be moved so as to
invert the chirality. If the ATOM has only three chains attached to it, then only
one of the chains will be moved. Note: this command is rather apt to crash LEaP.

"Select Rings/Residues/Molecules" − expands the currently selected group of
atoms to include all partially-contained rings, residues, or molecules.

"Show everything" − causes all ATOMs to become visible.

"Hide selection" − makes all selected ATOMs invisible.

"Show selection only" − makes only selected ATOMs visible.

"Mark selection unbuilt/built" − see "Unit/Build," above.

Display The Display pulldown contains commands that determine what information is
displayed within the viewing window.

"Names" − toggles display of ATOM names at each ATOM position.

"Types" − toggles display of molecular mechanics atom types. The ATOM types
are displayed within parentheses "()".

"Charges" − toggles display of the atomic charges.

"Residue names" − toggles display of residue names. These are displayed at the
position of the first ATOM, before any of that ATOM’s information that may be
displayed. The residue names are displayed within angled brackets "<>".

3/3/06

LEaP Using LEap Page 40

"Axes" − toggles display of the Cartesian coordinate axes. The origin of the axes
coincides with the origin of Cartesian space.

"Periodic box" − toggles display of the periodic box, if the UNIT has one.

3.4.2.2. Unit Editor Manipulation Buttons
The Manipulation buttons are Select, Twist, Move, Erase, and Draw. They determine the

behavior of the mouse left-button when the mouse pointer is in the Viewing Window.

Select This button allows one to select part or all of a UNIT in anticipation of a subse-
quent operation or action. In the Select mode, the user can highlight ATOMs
within the viewing window for special operations. The mouse pointer becomes a
pointing hand in the viewing window in this mode. Selected ATOMs are dis-
played in a different color (or different line styles on monochrome systems) from
all other ATOMs. Atoms can be selected with the left-button in several ways:
first, clicking on an atom and releasing selects that atom. Clicking twice in a row
on an atom (at any speed) selects all atoms (this is a bug - only the residue should
be selected). Keeping the button down and moving to release on another atom
selects all ATOMs in the shortest chain between the two ATOMs, if such a chain
exists. Finally, by first pressing the button in empty space, and holding it down as
the mouse is moved, one can "drag a box" enclosing atoms of interest. Note that
a current selection can be expanded by using the "Edit" menubar pulldown select
option to complete any partial selection of rings, residues or molecules.

If the user holds down the SHIFT key while performing any of the above actions,
the same effect will be seen, except ATOMs will be unselected.

Twist Twist mode operates on previously-Selected atoms. The intention is to
allow rotation about dihedrals; if too many atoms are selected, odd transforma-
tions can occur. While in the Twist mode, the mouse pointer looks like a
curved arrow. Twisting is driven by holding down the left-button anywhere in the
viewing window and moving the mouse up and down. It is important to select a
complete torsion (all four atoms) before trying to "twist" it.

Move Like Twist, Move mode operates on previously-Selected atoms. While in the
Move mode, the mouse pointer looks like four arrows coming out of one central
point. Holding down the left-button anywhere allows movement of these atoms
by dragging in any direction in the viewing plane. (The view can be rotated by
holding down the middle-button to allow any movement desired.) This option
allows the user to move the selected ATOMs relative to the unselected ATOMs.

To rotate the selected ATOMs relative to the unselected ones, press and drag the
mode (left) button while holding down the SHIFT key. The selected ATOMs will
rotate around a central ATOM on a "virtual sphere" (see the subsubsection below
on the rotate (middle) button for more information on the "virtual sphere"). The
user can change which ATOM is used as the center of rotation by clicking the
mode (left) button on any of the ATOMs in the window.

Erase Erase mode causes the mouse pointer to resemble a chalkboard eraser when it
is in the viewing window. Clicking the left-button will delete any atoms or bonds
under this mouse pointer, one atom or bond per click.

Draw Choosing Draw is equivalent to choosing the default "Elements" atom in the next
array of buttons; the initial default is carbon. While in the Draw mode, the

3/3/06

LEaP Using LEap Page 41

mouse pointer is a pencil when in the viewing window. Clicking the left-button
deposits an atom of the current element, while dragging the mouse pointer with
the left-button held down draws a bond: if no atom is found where the button is
released, one is created.

When the mouse pointer approaches an ATOM, the end of the line connected to
the pointer will "snap" to the nearest ATOM. This is to facilitate drawing of
bonds between ATOMs. Any bonds that are drawn will by default be single
bonds. To change the order of a bond, the user would move the mouse to any
point along the bond and click the mode (left) button. This will cause the order of
the bond to increase until it is reset back to a single bond. The user can cycle
through the following bond order choices: single, double, triple, and aromatic.

If the user rotates a structure as it is being drawn, she will notice that all of the
AT OMs that have been drawn lie in the same plane. New ATOMs are automati-
cally placed in the plane of the screen. The fact that LEaP places the new
AT OMs in the same plane is not a handicap because once a rough sketch of part
of the structure is compete, the user can invoke one of LEaP’s two model build-
ing facilities ("Unit/Build" and "Edit/Relax Selection" in the Unit Editor Menu
bar) to build full three dimensional coordinates.

3.4.2.3. Unit Editor Elements Buttons
C, H, O, ...

These buttons put the viewing window in Draw mode if it is not in that mode
already, and select the drawing element. The more common elements have their
own buttons, and all elements are also found by pulling down the other ele-
ments button.

3.4.2.4. Unit Editor Viewing Window
The viewing window displays a projection of the UNIT currently being edited. The user

can manipulate the structure within the viewing window with the mouse. By moving the mouse
and holding down the mouse buttons, the user can rotate, scale, and translate the UNIT within the
window. The functions attached to the mouse buttons are:

Rotate (Middle button)
By pressing the rotate (middle) button within the viewing window and dragging
the mouse, the user can rotate the UNIT around the center of the viewing win-
dow. While the rotate (middle) button is down, a circle appears within the view-
ing window, representing a "virtual sphere trackball." As the user drags the
mouse around the outside of the circle, the UNIT will spin around the axis nor-
mal to the screen. As the user drags the mouse within the circle, the UNIT will
spin around the axis in the screen, perpendicular to the movement of the mouse.
The structures that are being viewed can be considered to be embedded within a
sphere of glass. The circle is the projection of the edge of the sphere onto the
screen. Rotating a UNIT while the mouse is within the circle is akin to placing a
hand on a glass sphere and turning the sphere by pulling the hand. The rotate
operation does not modify the coordinates of the ATOMs; rather, it simply
changes the user’s point of view.

Translate (Right button)
By pressing the translate (right) button within the viewing window and dragging

3/3/06

LEaP Using LEap Page 42

the mouse around the viewing window, the user can translate the UNIT within the
plane of the screen. The structures will follow the mouse as it moves around the
window. This operation does not modify the coordinates of the UNIT.

Scale (middle plus right button)
If the scale "button" (holding the middle and right buttons down at the same
time) is depressed, the user will change the size of the structures within the view-
ing window. Pressing the scale (middle plus right) button and dragging the mouse
up and down the screen will increase and decrease the scale of the structures.
This operation does not modify the coordinates of the UNIT.

Mode button (left button) and the viewing window mode
The function of the left button is determined by the current mode of the viewing
window as described in the "Manipulation" section, above. When the mouse
enters the viewing window it changes shape to reflect the current mode of the
viewing window.

Spacebar Another always-available operation when the mouse pointer is in the viewing
window is the keyboard spacebar. It centers and normalizes the size of the
molecule in the viewing window. This is especially useful if the UNIT becomes
"lost" due to some operation.

The functions of the middle and right buttons are fixed and always available to the user. This
allows the user to change the viewpoint of the UNIT within the viewing window reg ardless of its
current mode. The user might ask why there are controls to translate in the plane of the screen,
but not out of the plane of the screen. This is because LEaP does not have depth-cueing or stereo
projection and this makes it difficult for users to perceive changes in the depth of a structure.
However, the user can rotate the entire UNIT by 90 degrees which will orient everything so that
the direction that was coming out of the screen becomes a direction lying in the plane of the
screen. Once the UNIT has been rotated using the rotate (middle) button, the user can translate
the structure anywhere in space. While it does take some getting used to, users can become very
adept at the combination of rotations and translations.

3.4.3. Atom Properties Editor
The Atom Properties Editor is popped up by the Unit Editor when the user selects the Edit

selected atoms command from the Edit pulldown. The Atom Properties Editor allows the
user to edit the properties of ATOMs using a convenient table format. ATOM properties are:
name, type, charge, and element.

3.4.4. Parmset Editor
If the user enters the command edit Foo in the Universe Editor and Foo is a PARMSET,

then a Parmset Editor is popped up. First, a window appears which contains a number of buttons.
The buttons list the parameters that can be edited − Atom, Bond, Angle, Proper Torsion, Improper
Torsion, and Hydrogen Bond − and an option to close the editor. Choosing one of the parameter
buttons will pop up a Table Editor. This editor resembles that of the Atom Properties Editor, hav-
ing three parts: the Menu Bar, Status Window, and Table Window.

3/3/06

LEaP Using LEap with AMBER Page 43

3.5. Basic instructions for using LEaP with AMBER
This section gives an overview of how LEaP is most commonly used. Detailed descriptions

of all the commands are given in the following section.

3.5.1. Building a Molecule For Molecular Mechanics
In order to prepare a molecule within LEaP for AMBER, three basic tasks need to be com-

pleted.

(1) Any needed UNIT or PARMSET objects must be loaded;

(2) The molecule must be constructed within LEaP;

(3) The user must output topology and coordinate files from LEaP to use in AMBER.

The most typical command sequence is the following:

source leaprc.ff94 load a force field

x = loadPdb trypsin.pdb load in a structure

.... add in cross-links, solvate, etc.

saveAmberParm x prmtop prmcrd save files for sander and other programs

There are a number of variants of this:

(1) Although loadPdb is by far the most common way to enter a structure, one might use
loadOff, loadMol2, or loadAmberPrep, or use the zMatrix command to build a
molecule from a z-matrix. See the Commands section below for descriptions of these
options. For situations where you do not have a starting structure (in the form of a pdb
file) LEaP can be used to build the molecule; you may find, however, that this is not
always as easy as it might be. Many experienced Amber users turn to other (commercial
and non-commercial) programs to create their initial structures.

Be very attentive to any errors produced in the loadPdb step; these generally mean that
LEaP has mis-read the file. A general rule of thumb is to keep editing your input pdb file until
LEaP stops complaining. It is often convenient to use the addPdbAtomMap or
addPdbResMap commands to make systematic changes from the names in your pdb files to
those in the Amber topology files; see the leaprc files for examples of this. An unknown residue
error message indicates that LEaP needs additional information. The antechamber chapter
describes procedures for building LEaP input files for small organic molecules. The tutorials con-
tain examples of creating and modifying residues.

3.5.2. Amino Acid Residues
The accompanying table shows the amino acid UNITs and their aliases as defined in the

LEaP libraries.

For each of the amino acids found in the LEaP libraries, there has been created an N-termi-
nal and a C-terminal analog. The N-terminal amino acid UNIT/RESIDUE names and aliases are
prefaced by the letter N (e.g. NALA) and the C-terminal amino acids by the letter C (e.g.
CALA}. If the user models a peptide or protein within LEaP, they may choose one of three ways
to represent the terminal amino acids. The user may use 1) standard amino acids, 2) protecting
groups (ACE/NME), or 3) the charged C- and N-terminal amino acid UNITs/RESIDUEs. If the
standard amino acids are used for the terminal residues, then these residues will have incomplete
valences. These three options are illustrated below:

3/3/06

LEaP Using LEap with AMBER Page 44

Group or residue Residue Name, Alias
Acetyl beginning group ACE
Amine ending group NHE
N-methylamine ending group NME
Alanine ALA
Arginine ARG
Asparagine ASN
Aspartic acid ASP
Aspartic acid--protonated ASH
Cysteine CYS
Cysteine--deprotonated CYM
Cystine, S--S crosslink CYX
Glutamic acid GLU
Glutamic acid--protonated GLH
Glutamine GLN
Glycine GLY
Histidine, delta H HID
Histidine, epsilon H HIE
Histidine, protonated HIP
Isoleucine ILE
Leucine LEU
Lysine LYS
Methionine MET
Phenylalanine PHE
Proline PRO
Serine SER
Threonine THR
Tryptophan TRP
Tyrosine TYR
Valine VAL

{ ALA VAL SER PHE }

{ ACE ALA VAL SER PHE NME }

{ NALA VAL SER CPHE }

The default for loading from PDB files is to use N- and C-terminal residues; this is established by
the addPdbResMap command in the default leaprc files. To force incomplete valences with
the standard residues, one would have to define a sequence (" x = { ALA VAL SER PHE
}") and use loadPdbUsingSeq, or use clearPdbResMap to completely remove the map-
ping feature.

Histidine can exist either as the protonated species or as a neutral species with a hydrogen at
the delta or epsilon position. For this reason, the histidine UNIT/RESIDUE name is either HIP,
HID, or HIE (but not HIS). The default "leaprc" files assign the name HIS to HIE. Thus, if a
PDB file is read that contains the residue HIS, the residue will be assigned to the HIE UNIT
object. This feature can be changed within one’s own "leaprc" file.

The AMBER force fields also differentiate between the residue cysteine (CYS) and the sim-
ilar residue that participates in disulfide bridges, cystine (CYX). The user will need to load the

3/3/06

LEaP Using LEap with AMBER Page 45

PDB file using the loadPdbUsingSeq command, substituting CYX for CYS in the sequence
wherever a disulfide bond will be created. (Or alternatively, the PDB file can be manually edited
to change CYS to CYX.) Then the user will have to explicitly define, using the bond command,
the disulfide bond for a pair of cystines, as this information is not read from the PDB file.

3.5.3. Nucleic Acid Residues
The following are defined for the 1994 force field.

Group or residue Residue Name, Alias
Adenine DA,RA
Thymine DT
Uracil RU
Cytosine DC,RC
Guanine DG,RG

The "D" or "R" prefix can be used to distinguish between deoxyribose and ribose units; with
the default leaprc file, ambiguous residues are assumed to be deoxy. Residue names like "DA"
can be followed by a "5" or "3" ("DA5", "DA3") for residues at the ends of chains; this is also the
default established by addPdbResMap, even if the "5" or "3" are not added in the PDB file. The
"5" and "3" residues are "capped" by a hydrogen; the plain and "3" residues include a "leading"
phosphate group. Neutral residues capped by hydrogens end in "N," such as "DAN."

3.5.4. Miscellaneous Residues

Miscellaneous Residue unit/residue name
TIP3P water molecule TP3
TIP4P water model TP4
TIP5P water model TP5
SPC/E water model SPC
Cesium cation Cs+
Potassium cation K+
Rubidium cation Rb+
Lithium cation Li+
Sodium cation Na+ or IP
Chlorine Cl- or IM
Large cation IB

"IB" represents a solvated monovalent cation (say, sodium) for use in vacuum simulations. The
cation UNITs are found in the files "ions91.lib" and "ions94.lib", while the water UNITs are in
the file "solvents.lib". The leaprc files assign the variables WAT and HOH to the TP3 UNIT
found in the OFF library file. Thus, if a PDB file is read and that file contains either the residue
name HOH or WAT , the TP3 UNIT will be substituted. See the solvate commands and Chap-
ter 2.9 for a discussion of how to use other water models.

A periodic box of 216 TIP3P waters (TIP3PBOX) is provided in the file "solvents.lib". The
box measures 18.774 angstroms on a side. This box of waters has been equilibrated by a Monte
Carlo simulation. It is the UNIT that should be used to solvate systems with TIP3P water
molecules within LEaP. It has been provided by W. L. Jorgensen. Boxes are also available for
other water models (TIP4P, TIP5P, POL3, SPC/E), and for chloroform, methanol, and N-methy-
lacetamide; these are described in Chapter 2.

3/3/06

LEaP Using LEap with AMBER Page 46

3.6. Commands
The following is a description of the commands that can be accessed using the command

line interface in tleap, or through the command line editor in xleap. Whenever an argument in a
command line definition is enclosed in brackets ([arg]), then that argument is optional. When
examples are shown, the command line is prefaced by "> ", and the program output is shown
without this character preface.

Some commands that are almost never used have been removed from this description to
save space. You can use the "help" facility to obtain information about these commands; most
only make sense if you understand what the program is doing behind the scenes.

3.6.1. add
add a b

UNIT/RESIDUE/ATOM a,b

Add the object b to the object a. This command is used to place ATOMs within
RESIDUEs, and RESIDUEs within UNITs. This command will work only if b is not
contained by any other object.

The following example illustrates both the add command and the way the tip3p water
molecule is created for the LEaP distribution tape.

> h1 = createAtom H1 HW 0.417

> h2 = createAtom H2 HW 0.417

> o = createAtom O OW -0.834

>

> set h1 element H

> set h2 element H

> set o element O

>

> r = createResidue TIP3

> add r h1

> add r h2

> add r o

>

> bond h1 o

> bond h2 o

> bond h1 h2

>

> TIP3 = createUnit TIP3

>

> add TIP3 r

> set TIP3.1 restype solvent

> set TIP3.1 imagingAtom TIP3.1.O

>

> zMatrix TIP3 {

> { H1 O 0.9572 }

> { H2 O H1 0.9572 104.52 }

> }

3/3/06

LEaP Commands Page 47

>

> saveOff TIP3 water.lib

Saving TIP3.

Building topology.

Building atom parameters.

3.6.2. addAtomTypes
addAtomTypes { { type element hybrid } { ... } ... }

STRING type

STRING element

STRING hybrid

Define element and hybridization for force field atom types. This command for the stan-
dard force fields can be seen in the default leaprc files. The STRINGs are most safely
rendered using quotation marks. If atom types are not defined, confusing messages about
hybridization can result when loading PDB files.

3.6.3. addIons
addIons unit ion1 numIon1 [ion2 numIon2]

UNIT unit

UNIT ion1

NUMBER numIon1

UNIT ion2

NUMBER numIon2

Adds counterions in a shell around unit using a Coulombic potential on a grid. If
numIon1 is 0, then the unit is neutralized. In this case, numIon1 must be opposite in
charge to unit and numIon2 cannot be specified. If solvent is present, it is ignored in the
charge and steric calculations, and if an ion has a steric conflict with a solvent molecule,
the ion is moved to the center of said molecule, and the latter is deleted. (To avoid this
behavior, solvate after addIons.) Ions must be monoatomic. This procedure is not guar-
anteed to globally minimize the electrostatic energy. When neutralizing regular-backbone
nucleic acids, the first cations will generally be placed between phosphates, leaving the
final two ions to be placed somewhere around the middle of the molecule.The default grid
resolution is 1 Å, extending from an inner radius of (maxIonVdwRadius + maxSo-
luteAtomVdwRadius) to an outer radius 4 Å beyond. A distance-dependent dielectric is
used for speed.

3.6.4. addPdbAtomMap
addPdbAtomMap list

LIST list

The atom Name Map is used to try to map atom names read from PDB files to atoms
within residue UNITs when the atom name in the PDB file does not match an atom in the

3/3/06

LEaP Commands Page 48

residue. This enables PDB files to be read in without extensive editing of atom names.
Typically, this command is placed in the LEaP start-up file, "leaprc", so that assignments
are made at the beginning of the session. The LIST is a LIST of LISTs. Each sublist
contains two entries to add to the Name Map. Each entry has the form:

{ string string }

where the first string is the name within the PDB file, and the second string is the name in
the residue UNIT.

3.6.5. addPdbResMap
addPdbResMap list

LIST list

The Name Map is used to map RESIDUE names read from PDB files to variable names
within LEaP. Typically, this command is placed in the LEaP start-up file, "leaprc", so that
assignments are made at the beginning of the session. The LIST is a LIST of LISTs.
Each sublist contains two or three entries to add to the Name Map. Each entry has the
form:

{ double string string }

where double can be 0 or 1, the first string is the name within the PDB file, and the sec-
ond string is the variable name to which the first string will be mapped. To illustrate, the
following is part of the Name Map that exists when LEaP is started from the "leaprc" file
included in the distribution tape:

ADE --> DADE

: :

0 ALA --> NALA

0 ARG --> NARG

: :

1 ALA --> CALA

1 ARG --> CARG

: :

1 VAL --> CVAL

Thus, the residue ALA will be mapped to NALA if it is the N-terminal residue and CALA
if it is found at the C-terminus. The above Name Map was produced using the following
(edited) command line:

> addPdbResMap {

> { 0 ALA NALA } { 1 ALA CALA }

> { 0 ARG NARG } { 1 ARG CARG }

: :

> { 0 VAL NVAL } { 1 VAL CVAL }

>

: :

3/3/06

LEaP Commands Page 49

> { ADE DADE }

: :

> }

3.6.6. alias
alias [string1 [string2]]

STRING string1

STRING string2

This command will add or remove an entry to the Alias Table or list entries in the Alias
Table. If both strings are present, then string1 becomes the alias to string2, the original
command. If only one string is used as an argument, then this string is removed from the
Alias Table. If no arguments are given with the command, the current aliases stored in
the Alias Table will be listed.

The proposed alias is first checked for conflict with the LEaP commands and it is rejected
if a conflict is found. A proposed alias will replace an existing alias with a warning being
issued. The alias can stand for more than a single word, but also as an entire string so the
user can quickly repeat entire lines of input.

3.6.7. bond
bond atom1 atom2 [order]

ATOM atom1

ATOM atom2

STRING order

Create a bond between atom1 and atom2. Both of these ATOMs must be contained by the
same UNIT. By default, the bond will be a single bond. By specifying "S", "D", "T", or
"A" as the optional argument, order, the user can specify a single, double, triple, or aro-
matic bond, respectively. Example:

bond trx.32.SG trx.35.SG

3.6.8. bondByDistance
bondByDistance container [maxBond]

CONT container

NUMBER maxBond

Create single bonds between all ATOMs in container that are within maxBond angstroms
of each other. If maxBond is not specified then a default distance will be used. This
command is especially useful in building molecules. Example:

bondByDistance alkylChain

3/3/06

LEaP Commands Page 50

3.6.9. center
center container

UNIT/RESIDUE/ATOM container

Display the coordinates of the geometric center of the ATOMs within container. In the
following example, the alanine UNIT found in the amino acid library has been examined
by the center command:

> center ALA

The center is at: 4.04, 2.80, 0.49

3.6.10. charge
charge container

UNIT/RESIDUE/ATOM container

This command calculates the total charge of the ATOMs within container.

3.6.11. check
check unit [parms]

UNIT unit

PARMSET parms

This command can be used to check the UNIT for internal inconsistencies that could
cause problems when performing calculations. This is a very useful command that
should be used before a UNIT is saved with saveAmberParm or its variants. Currently it
checks for the following possible problems:

• long bonds

• short bonds

• non-integral total charge of the UNIT.

• missing force field atom types

• close contacts (< 1.5 Å) between nonbonded ATOMs.

The user may collect any missing molecular mechanics parameters in a PARMSET for
subsequent editing. In the following example, the alanine UNIT found in the amino acid
library has been examined by the check command:

> check ALA

Checking ’ALA’....

Checking parameters for unit ’ALA’.

Checking for bond parameters.

Checking for angle parameters.

Unit is OK.

3/3/06

LEaP Commands Page 51

3.6.12. combine
variable = combine list

object variable

LIST list

Combine the contents of the UNITs within list into a single UNIT. The new UNIT is
placed in variable. This command is similar to the sequence command except it does not
link the ATOMs of the UNITs together. In the following example, the input and output
should be compared with the example given for the sequence command.

> tripeptide = combine { ALA GLY PRO }

Sequence: ALA

Sequence: GLY

Sequence: PRO

> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

3.6.13. copy
newvariable = copy variable

object newvariable

object variable

Creates an exact duplicate of the object variable. Since newvariable is not pointing to the
same object as variable, changing the contents of one object will not alter the other
object. Example:

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = copy tripeptide

> solvateBox tripeptideSol TIP3PBOX 8 2

In the above example, tripeptide is a separate object from tripeptideSol and is not sol-
vated. Had the user instead entered

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = tripeptide

> solvateBox tripeptideSol TIP3PBOX 8 2

then both tripeptide and tripeptideSol would be solvated since they would both point to
the same object.

3/3/06

LEaP Commands Page 52

3.6.14. createAtom
variable = createAtom name type charge

ATOM variable

STRING name

STRING type

NUMBER charge

Return a new and empty ATOM with name, type, and charge as its atom name, atom type,
and electrostatic point charge. (See the add command for an example of the createAtom
command.)

3.6.15. createParmset
variable = createParmset name

PARMSET variable

STRING name

Return a new and empty PARMSET with the name "name".

> newparms = createParmset newParms

3.6.16. createResidue
variable = createResidue name

RESIDUE variable

STRING name

Return a new and empty RESIDUE with the name "name". (See the add command for an
example of the createResidue command.)

3.6.17. createUnit
variable = createUnit name

UNIT variable

STRING name

Return a new and empty UNIT with the name "name". (See the add command for an
example of the createUnit command.)

3.6.18. deleteBond
deleteBond atom1 atom2

ATOM atom1

ATOM atom2

Delete the bond between the ATOMs atom1 and atom2. If no bond exists, an error will be

3/3/06

LEaP Commands Page 53

displayed.

3.6.19. desc
desc variable

object variable

Print a description of the object. In the following example, the alanine UNIT found in the
amino acid library has been examined by the desc command:

> desc ALA

UNIT name: ALA

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<ALA 1>.A<C 9>

Contents:

R<ALA 1>

Now, the desc command is used to examine the first residue (1) of the alanine UNIT:

> desc ALA.1

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

Next, we illustrate the desc command by examining the ATOM N of the first residue (1)
of the alanine UNIT:

> desc ALA.1.N

ATOM

Name: N

Type: N

Charge: -0.463

Element: N

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int - nmin- nbld-

3/3/06

LEaP Commands Page 54

Atom position: 3.325770, 1.547909, -0.000002

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<ALA 1>.A<HN 2> by a single bond.

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Since the N ATOM is also the first atom of the ALA residue, the following command will
give the same output as the previous example:

> desc ALA.1.1

3.6.20. edit
edit unit

UNIT unit

In xleap this command creates a Unit Editor that contains the UNIT unit. The user can
view and edit the contents of the UNIT using the mouse. The command causes a copy of
the object to be edited. If the object that the user wants to edit is null, then the edit
command assumes that the user wants to edit a new UNIT with a single RESIDUE within
it. PARMSETs can also be edited. In tleap this command prints an error message.

3.6.21. groupSelectedAtoms
groupSelectedAtoms unit name

UNIT unit

STRING name

Create a group within unit with the name, "name", using all of the ATOMs within the
UNIT that are selected. If the group has already been defined then overwrite the old
group. The desc command can be used to list groups. Example:

groupSelectedAtoms TRP sideChain

An expression like "TRP@sideChain" returns a LIST, so any commands that require
LIST ’s can take advantage of this notation. After assignment, one can access groups
using the "@" notation. Examples:

select TRP@sideChain

center TRP@sideChain

The latter example will calculate the center of the atoms in the "sideChain" group. (see
the select command for a more detailed example.)

3/3/06

LEaP Commands Page 55

3.6.22. help
help [string]

STRING string

This command prints a description of the command in string. If the STRING is not given
then a list of help topics is provided.

3.6.23. impose
impose unit seqlist internals

UNIT unit

LIST seqlist

LIST internals

The impose command allows the user to impose internal coordinates on the UNIT. The
list of RESIDUEs to impose the internal coordinates upon is in seqlist. The internal coor-
dinates to impose are in the LIST internals.

The command works by looking into each RESIDUE within the UNIT that is listed in the
seqlist argument and attempts to apply each of the internal coordinates within internals.
The seqlist argument is a LIST of NUMBERs that represent sequence numbers or ranges
of sequence numbers. Ranges of sequence numbers are represented by two element
LISTs that contain the first and last sequence number in the range. The user can specify
sequence number ranges that are larger than what is found in the UNIT. For example, the
range { 1 999 } represents all RESIDUEs in a 200 RESIDUE UNIT.

The internals argument is a LIST of LISTs. Each sublist contains a sequence of ATOM
names which are of type STRING followed by the value of the internal coordinate. An
example of the impose command would be:

impose peptide { 1 2 3 } {

{ N CA C N -40.0 }

{ C N CA C -60.0 }

}

This would cause the RESIDUE with sequence numbers 1, 2, and 3 within the UNIT pep-
tide to assume an alpha helical conformation. The command

impose peptide { 1 2 { 5 10 } 12 } {

{ CA CB 5.0 } }

will impose on the residues with sequence numbers 1, 2, 5, 6, 7, 8, 9, 10, and 12 within
the UNIT peptide a bond length of 5.0 angstroms between the alpha and beta carbons.
RESIDUEs without an ATOM named CB (like glycine) will be unaffected.

Three types of conformational change are supported: bond length changes, bond angle
changes, and torsion angle changes. If the conformational change involves a torsion
angle, then all dihedrals around the central pair of atoms are rotated. The entire list of
internals are applied to each RESIDUE.

3/3/06

LEaP Commands Page 56

3.6.24. list
List all of the variables currently defined. To illustrate, the following (edited) output
shows the variables defined when LEaP is started from the leaprc file included in the dis-
tribution tape:

> list

A

ACE ALA

ARG ASN

: :

VAL W

WAT Y

3.6.25. loadAmberParams
variable = loadAmberParams filename

PARMSET variable

STRING filename

Load an AMBER format parameter set file and place it in variable. All interactions
defined in the parameter set will be contained within variable. This command causes the
loaded parameter set to be included in LEaP ’s list of parameter sets that are searched
when parameters are required. General proper and improper torsion parameters are mod-
ified during the command execution with the LEaP general type "?" replacing the
AMBER general type "X".

> parm91 = loadAmberParams parm91X.dat

> saveOff parm91 parm91.lib

Saving parm91.

3.6.26. loadAmberPrep
loadAmberPrep filename [prefix]

STRING filename

STRING prefix

This command loads an AMBER PREP input file. For each residue that is loaded, a new
UNIT is constructed that contains a single RESIDUE and a variable is created with the
same name as the name of the residue within the PREP file. If the optional argument pre-
fix is provided it will be prefixed to each variable name; this feature is used to prefix
UATOM residues, which have the same names as AATOM residues with the string "U" to
distinguish them. Let us imagine that the following AMBER PREP input file exists:

0 0 2

Crown Fragment A

3/3/06

LEaP Commands Page 57

cra.res

CRA INT 0

CORRECT NOMIT DU BEG

0.0

1 DUMM DU M 0 0 0 0. 0. 0.

2 DUMM DU M 0 0 0 1.000 0. 0.

3 DUMM DU M 0 0 0 1.000 90. 0.

4 C1 CT M 0 0 0 1.540 112. 169.

5 H1A HC E 0 0 0 1.098 109.47 -110.0

6 H1B HC E 0 0 0 1.098 109.47 110.0

7 O2 OS M 0 0 0 1.430 112. -72.

8 C3 CT M 0 0 0 1.430 112. 169.

9 H3A HC E 0 0 0 1.098 109.47 -49.0

10 H3B HC E 0 0 0 1.098 109.47 49.0

CHARGE

0.2442 -0.0207 -0.0207 -0.4057 0.2442

-0.0207 -0.0207

DONE

STOP

This fragment can be loaded into LEaP using the following command:

> loadAmberPrep cra.in

Loaded UNIT: CRA

3.6.27. loadOff
loadOff filename

STRING filename

This command loads the OFF library within the file named filename. All UNITs and
PARMSETs within the library will be loaded. The objects are loaded into LEaP under the
variable names the objects had when they were saved. Variables already in existence that
have the same names as the objects being loaded will be overwritten. Any PARMSETs
loaded using this command are included in LEaP ’s library of PARMSETs that is
searched whenever parameters are required (The old AMBER format is used for PARM-
SETs rather than the OFF format in the default configuration). Example command line:

> loadOff parm91.lib

Loading library: parm91.lib

Loading: PARAMETERS

3/3/06

LEaP Commands Page 58

3.6.28. loadMol2
variable = loadMol2 filename

STRING filename

object variable

Load a SYBYL Mol2 format file in a UNIT. This command is very much like loadOff,
except that it only creates a single UNIT. Currently, only Mol2 files that contain a single
residue will be read correctly.

3.6.29. loadPdb
variable = loadPdb filename

STRING filename

object variable

Load a Protein Databank format file with the file name filename. The sequence numbers
of the RESIDUEs will be determined from the order of residues within the PDB file
AT OM records. This function will search the variables currently defined within LEaP for
variable names that map to residue names within the ATOM records of the PDB file. If a
matching variable name is found then the contents of the variable are added to the UNIT
that will contain the structure being loaded from the PDB file. Adding the contents of the
matching UNIT into the UNIT being constructed means that the contents of the matching
UNIT are copied into the UNIT being built and that a bond is created between the con-
nect0 ATOM of the matching UNIT and the connect1 ATOM of the UNIT being built.
The UNITs are combined in the same way UNITs are combined using the sequence com-
mand. As atoms are read from the ATOM records their coordinates are written into the
correspondingly named ATOMs within the UNIT being built. If the entire residue is read
and it is found that ATOM coordinates are missing, then external coordinates are built
from the internal coordinates that were defined in the matching UNIT. This allows LEaP
to build coordinates for hydrogens and lone-pairs which are not specified in PDB files.

> crambin = loadPdb 1crn

Loading PDB file

Matching PDB residue names to LEaP variables.

Mapped residue THR, term: 0, seq. number: 0 to: NTHR.

Residue THR, term: M, seq. number: 1 was not

found in name map.

Residue CYS, term: M, seq. number: 2 was not

found in name map.

Residue CYS, term: M, seq. number: 3 was not

found in name map.

Residue PRO, term: M, seq. number: 4 was not

found in name map.

: : :

Residue TYR, term: M, seq. number: 43 was not

found in name map.

Residue ALA, term: M, seq. number: 44 was not

found in name map.

3/3/06

LEaP Commands Page 59

Mapped residue ASN, term: 1, seq. number: 45 to: CASN.

Joining NTHR - THR

Joining THR - CYS

Joining CYS - CYS

Joining CYS - PRO

: : :

Joining ASP - TYR

Joining TYR - ALA

Joining ALA - CASN

The above edited listing shows the use of this command to load a PDB file for the protein
crambin. Several disulfide bonds are present in the protein and these bonds are indicated
in the PDB file. The loadPdb command, however, cannot read this information from the
PDB file. It is necessary for the user to explicitly define disulfide bonds using the bond
command.

3.6.30. loadPdbUsingSeq
loadPdbUsingSeq filename unitlist

STRING filename

LIST unitlist

This command reads a Protein Data Bank format file from the file named filename. This
command is identical to loadPdb except it does not use the residue names within the PDB
file. Instead the sequence is defined by the user in unitlist. For more details see loadPdb.

> peptSeq = { UALA UASN UILE UVAL UGLY }

> pept = loadPdbUsingSeq pept.pdb peptSeq

In the above example, a variable is first defined as a LIST of united atom RESIDUEs. A
PDB file is then loaded, in this sequence order, from the file "pept.pdb".

3.6.31. logFile
logFile filename

STRING filename

This command opens the file with the file name filename as a log file. User input and all
output is written to the log file. Output is written to the log file as if the verbosity level
were set to 2. An example of this command is:

> logfile /disk/howard/leapTrpSolvate.log

3.6.32. measureGeom
measureGeom atom1 atom2 [atom3 [atom4]]

ATOM atom1

3/3/06

LEaP Commands Page 60

ATOM atom2

ATOM atom3

ATOM atom4

Measure the distance, angle, or torsion between two, three, or four ATOMs, respectively.

In the following example, we first describe the RESIDUE ALA of the ALA UNIT in
order to find the identity of the ATOMs. Next, the measureGeom command is used to
determine a distance, simple angle, and a dihedral angle. As shown in the example, the
AT OMs may be identified using atom names or numbers.

> desc ALA.ALA

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

> measureGeom ALA.ALA.1 ALA.ALA.3

Distance: 1.45 angstroms

> measureGeom ALA.ALA.1 ALA.ALA.3 ALA.ALA.5

Angle: 111.10 degrees

> measureGeom ALA.ALA.N ALA.ALA.CA ALA.ALA.C ALA.ALA.O

Torsion angle: 0.00 degrees

3.6.33. quit
Quit the LEaP program.

3.6.34. remove
remove a b

CONT a

CONT b

Remove the object b from the object a. If b is not contained by a then an error message
will be displayed. This command is used to remove ATOMs from RESIDUEs, and

3/3/06

LEaP Commands Page 61

RESIDUEs from UNITs. If the object represented by b is not referenced by some variable
name then it will be destroyed.

> dipeptide = combine { ALA GLY }

Sequence: ALA

Sequence: GLY

> desc dipeptide

UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<GLY 2>.A<C 6>

Contents:

R<ALA 1>

R<GLY 2>

> remove dipeptide dipeptide.2

> desc dipeptide

UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: null

Contents:

R<ALA 1>

3.6.35. saveAmberParm
saveAmberParm unit topologyfilename coordinatefilename

UNIT unit

STRING topologyfilename

STRING coordinatefilename

Save the AMBER topology and coordinate files for the UNIT into the files named topolo-
gyfilename and coordinatefilename respectively. This command will cause LEaP to
search its list of PARMSETs for parameters defining all of the interactions between the
AT OMs within the UNIT. This command produces topology files and coordinate files that
are identical in format to those produced by AMBER PARM and can be read into
AMBER for calculations. The output of this operation can be used for minimizations,
dynamics, and thermodynamic integration calculations.

In the following example, the topology and coordinates from the all_amino94.lib UNIT
ALA are generated:

> saveamberparm ALA ala.top ala.crd

Building topology.

Building atom parameters.

Building bond parameters.

Building angle parameters.

Building proper torsion parameters.

Building improper torsion parameters.

Building H-Bond parameters.

3/3/06

LEaP Commands Page 62

3.6.36. saveAmberParmPol
saveAmberParmPol unit topologyfilename coordinatefilename

UNIT unit

STRING topologyfilename

STRING coordinatefilename

Like sav eAmberParm, but includes atomic polarizabilities in the topology file for use
with IPOL=1 in Sander. The polarizabilities are according to atom type, and are defined
in the ’mass’ section of the parm.dat or frcmod file.

3.6.37. saveOff
saveOff object filename

object object

STRING filename

The saveOff command allows the user to save UNITs and PARMSETs to a file named
filename. The file is written using the Object File Format (off) and can accommodate an
unlimited number of uniquely named objects. The names by which the objects are stored
are the variable names specified in the argument of this command. If the file filename
already exists then the new objects will be added to the file. If there are objects within
the file with the same names as objects being saved then the old objects will be overwrit-
ten. The argument object can be a single UNIT, a single PARMSET, or a LIST of mixed
UNITs and PARMSETs. (See the add command for an example of the saveOff com-
mand.)

3.6.38. savePdb
savePdb unit filename

UNIT unit

STRING filename

Write UNIT to the file filename as a PDB format file. In the following example, the PDB
file from the "all_amino94.lib" UNIT ALA is generated:

> savepdb ALA ala.pdb

3.6.39. sequence
variable = sequence list

UNIT variable

LIST list

The sequence command is used to create a new UNIT by combining the contents of a
LIST of UNITs. The first argument is a LIST of UNITs. A new UNIT is constructed by
taking each UNIT in the sequence in turn and copying its contents into the UNIT being
constructed. As each new UNIT is copied, a bond is created between the tail ATOM of

3/3/06

LEaP Commands Page 63

the UNIT being constructed and the head ATOM of the UNIT being copied, if both con-
nect ATOMs are defined. If only one is defined, a warning is generated and no bond is
created. If neither connection ATOM is defined then no bond is created. As each
RESIDUE is copied into the UNIT being constructed it is assigned a sequence number
which represents the order the RESIDUEs are added. Sequence numbers are assigned to
the RESIDUEs so as to maintain the same order as was in the UNIT before it was copied
into the UNIT being constructed. This command builds reasonable starting coordinates
for all ATOMs within the UNIT; it does this by assigning internal coordinates to the link-
ages between the RESIDUEs and building the external coordinates from the internal
coordinates from the linkages and the internal coordinates that were defined for the indi-
vidual UNITs in the sequence.

> tripeptide = sequence { ALA GLY PRO }

Sequence: ALA

Sequence: GLY

Joining ALA - GLY

Sequence: PRO

Joining GLY - PRO

> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

3.6.40. set
set default variable value

STRING variable

STRING value

or
set container parameter object

CONT container

STRING parameter

object object

This command sets the values of some global parameters (when the first argument is
"default") or sets various parameters associated with container. The following parameters
can be set within LEaP:

For "default" parameters

PBradii Set to "mbondi" to use modified Bondi radii (where the hydrogens are
modified from the Bondi values). Here the radius of hydrogen bonded to
oxygen or sulfur is set to 0.8; hydrogen bonded to carbon is 1.3; hydrogen

3/3/06

LEaP Commands Page 64

bonded to nitrogen is 1.3. These parameters are the default, and are those
used by Tsui & Case [52], and are the recommended ones when igb = 1 in
the sander input. The code in Amber (version 6) used values like the
"mbondi" values, except that the radius for hydrogen bonded to nitrogen
was 1.2; you can use the "amber6" keyword for PBradii to use these earlier
values [53], but this is only recommended if you want to check results
against those from Amber6, or if you need to extend a simulation started
with the earlier parameters.

Set to "mbondi2" to use another set of modified Bondi radii and Tinker
screening parameters for generalized Born calculations. These values are
recommended when igb = 2 and igb = 5 in the sander input. Here only the
radius of hydrogen bonded to nitrogen is increased to 1.3. Original bondi
radii, set by "bondi" also perform reasonably well with this GB model; see
[54] for details.

Set to "bondi" when using igb=7.

The values specified above are put into the RADII and SCREENING sec-
tions of the prmtop file, and could be edited by hand from there if further
changes were desired.

OldPrmtopFormat
If set to "on", the saveAmberParm command will write a prmtop file in the
format used in Amber6 and before; if set to "off" (the default), it will use
the new format.

Dielectric If set to "distance" (the default), electrostatic calculations in LEaP will use
a distance-dependent dielectric; if set to "constant", and constant dielectric
will be used.

PdbWriteCharges
If set to "on", atomic charges will be placed in the "B-factor" field of pdb
files saved with the savePdb command; if set to "off" (the default), no such
charges will be written.

PdbWriteRadii If set to "on", atomic radii will be placed in the " " field pdb files saved
with the savePdb command; if set to "off" (the default), no such radii will
be written.

FlexibleWater If set to "on", LEaP will not remove the HW-OW-HW angle from water
residues; if set to "off" (the default), LEaP will remove this angle. In all
cases, the HW-HW-OW angle in water residues is removed if it is present.
As the name suggests, you should turn this variable "on" if you are using a
flexible water model.

For ATOMs:

name A unique STRING descriptor used to identify ATOMs.

type This is a STRING property that defines the AMBER force field atom type.

charge The charge property is a NUMBER that represents the ATOM’s electro-
static point charge to be used in a molecular mechanics force field.

position This property is a LIST of NUMBERs containing three values: the (X, Y,
Z) Cartesian coordinates of the ATOM.

3/3/06

LEaP Commands Page 65

For RESIDUEs:

connect0 This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUEsS connect0 ATOM is
usually defined as the UNIT’s head ATOM.

connect1 This is an ATOM property which defines an ATOM that is used in making
links to other RESIDUEs. In UNITs containing single RESIDUEs, the
RESIDUEsS connect1 ATOM is usually defined as the UNIT’s tail ATOM.

connect2 This is an ATOM property which defines an ATOM that can be used in
making links to other RESIDUEs. In amino acids, the convention is that
this is the ATOM to which disulfide bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Cur-
rently, it can have one of the following values: "undefined", "solvent",
"protein", "nucleic", or "saccharide".

name This STRING property is the RESIDUE name.

For UNITs:

head Defines the ATOM within the UNIT that is connected when UNITs are
joined together: the tail ATOM of one UNIT is connected to the head
AT OM of the subsequent UNIT in any sequence.

tail Defines the ATOM within the UNIT that is connected when UNITs are
joined together: the tail ATOM of one UNIT is connected to the head
AT OM of the subsequent UNIT in any sequence.

box The property defines the bounding box of the UNIT. If it is defined as
null then no bounding box is defined. If the value is a single NUMBER
then the bounding box will be defined to be a cube with each side being
NUMBER of angstroms across. If the value is a LIST then it must be a
LIST containing three numbers, the lengths of the three sides of the bound-
ing box.

cap The property defines the solvent cap of the UNIT. If it is defined as null
then no solvent cap is defined. If the value is a LIST then it must contain
four numbers, the first three define the Cartesian coordinates (X, Y, Z) of
the origin of the solvent cap in angstroms, the fourth NUMBER defines the
radius of the solvent cap in angstroms.

3.6.41. setBox
setBox unit vdw OR centers [buffer OR buffer_xyz_list]

UNIT unit

The setBox command adds a periodic box to the UNIT, turning it into a periodic system
for the simulation programs. It does not add any solvent to the system. The choice of
"vdw" or "centers" determines whether the box encloses the entire atoms or just the atom
centers - use "centers" if the system has been previously equilibrated as a periodic box.
See the solvateBox command for a description of the buffer variable, which extends
either type of box by an arbitrary amount.

3/3/06

LEaP Commands Page 66

3.6.42. solvateBox
solvateBox solute solvent buffer [iso] [closeness]

UNIT solute

UNIT solvent

object buffer

NUMBER closeness

The solvateBox command creates a rectangular parallelepiped solvent box around the
solute UNIT. The solute UNIT is modified by the addition of solvent RESIDUEs. (For
most liquid state simulations, the solvateOct command discussed below is probably a bet-
ter choice.)

The normal choice for a TIP3 _solvent_ UNIT is TIP3PBOX, which is a snapshot from a
room-temperature equilibration for this model. If you want to solvate with other water
models, look for a "BOX" with that model (e.g. TIP4PBOX, POLBOX, SPCBOX,
TIP5PBOX). If you need to use a water model other than these, try the following: (a) sol-
vate the system with TIP3PBOX, using the default TIP3 model; (b) use ambpdb to con-
vert your prmtop file to Brookhaven format; (c) restart LEaP, choose the water model you
want (instructions are in the Database chapter), then use loadPdb to bring back in the sys-
tem you have created. The issue a setBox command to provide a box. It is also best to
manually edit the resulting prmcrd file so that its last line (which contains the box infor-
mation) matches what you had from the original run with TIP3PBOX; this corrects a
glitch which prevents setBox from making as good a box as does solvateBox or solva-
teOct.

Note that equilibration will always be required to bring the artificial box to reasonable
density, since Van der Waals voids remain due to the impossibility of natural packing of
solvent around the solute and at the edges of the box. First, equilibrate the system at con-
stant volume to the temperature you want, then turn on constant pressure to adjust the
system density to the desired value.

The solvent UNIT is copied and repeated in all three spatial directions to create a box
containing the entire solute and a buffer zone defined by the buffer argument. The buffer
argument defines the distance, in angstroms, between the wall of the box and the closest
AT OM in the solute. If the buffer argument is a single NUMBER, then the buffer dis-
tance is the same for the x, y, and z directions, unless the ’iso’ option is used to make the
box cubic, with the shortest box clearance = buffer. If the buffer argument is a LIST of
three NUMBERs, then the NUMBERs are applied to the x, y, and z axes respectively. As
the larger box is created and superimposed on the solute, solvent molecules overlapping
the solute are removed.

The optional closeness parameter can be used to control how close, in angstroms, solvent
AT OMs can come to solute ATOMs. The default value of the closeness argument is 1.0.
Smaller values allow solvent ATOMs to come closer to solute ATOMs. The criterion for
rejection of overlapping solvent RESIDUEs is if the distance between any solvent ATOM
to the closest solute ATOM is less than the sum of the ATOMs VANDERWAAL distances
multiplied by the closeness argument.

This command modifies the _solute_ UNIT in several ways. First, the coordinates of the
AT OMs are modified to move the center of a box enclosing the Van der Waals radii of the
atoms to the origin. Secondly, the UNIT is modified by the addition of _solvent_

3/3/06

LEaP Commands Page 67

RESIDUEs copied from the _solvent_ UNIT. Finally, the box parameter of the new sys-
tem (still named for the _solute_) is modified to reflect the fact that a periodic, rectilinear
solvent box has been created around it.

In this example, it is assumed that the file solvents.lib, containing TIP3PBOX, has been
loaded already (as is done by the default leaprc):

>> mol = loadpdb my.pdb

>> solvateBox sol TIP3PBOX 10

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 27.512 32.339 32.066

Solvent unit box: 18.774 18.774 18.774

Total vdw box size: 30.995 35.538 35.416 angstroms.

Total mass 14470.768 amu, Density 0.616 g/cc

Added 785 residues.

Again, note that the density of 0.601 g/cc points to the need for constant pressure equili-
bration. (See the discussion of equilibration in the Q&A section of the amber web.)

3.6.43. solvateCap
solvateCap solute solvent position radius [closeness]

UNIT solute

UNIT solvent

object position

NUMBER radius

NUMBER closeness

The solvateCap command creates a solvent cap around the solute UNIT. The solute
UNIT is modified by the addition of solvent RESIDUEs. The solvent box will be
repeated in all three spatial directions to create a large solvent sphere with a radius of
radius angstroms.

The position argument defines where the center of the solvent cap is to be placed. If posi-
tion is a RESIDUE, ATOM, or a LIST of UNITs, RESIDUEs, or ATOMs, then the geo-
metric center of the ATOMs within the object will be used as the center of the solvent cap
sphere. If position is a LIST containing three NUMBERs, then the position argument will
be treated as a vector that defines the position of the solvent cap sphere center.

The optional closeness parameter can be used to control how close, in angstroms, solvent
AT OMs can come to solute ATOMs. The default value of the closeness argument is 1.0.
Smaller values allow solvent ATOMs to come closer to solute ATOMs. The criterion for
rejection of overlapping solvent RESIDUEs is if the distance between any solvent ATOM
to the closest solute ATOM is less than the sum of the ATOMs VANDERWAAL’s dis-
tances multiplied by the closeness argument.

This command modifies the solute UNIT in several ways. First, the UNIT is modified by
the addition of solvent RESIDUEs copied from the solvent UNIT. Secondly, the cap
parameter of the UNIT solute is modified to reflect the fact that a solvent cap has been
created around the solute.

>> mol = loadpdb my.pdb

3/3/06

LEaP Commands Page 68

>> solvateCap mol TIP3PBOX mol.2.CA 8.0 2.0

Added 3 residues.

3.6.44. solvateDontClip
solvateDontClip solute solvent buffer [closeness]

UNIT solute

UNIT solvent

object buffer

NUMBER closeness

This command is identical to the solvateBox command except that the solvent box that is
created is not clipped to the boundary of the buffer region. This command forms larger
solvent boxes than does solvateBox because it does not cause solvent that is outside the
buffer region to be discarded. This helps to preserve the periodic structure of properly
constructed solvent boxes, preventing hot-spots from forming.

>> mol = loadpdb my.pdb

>> solvateDontClip mol TIP3PBOX 10

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 27.512 32.339 32.066

Solvent unit box: 18.774 18.774 18.774

Total vdw box size: 41.120 40.899 41.075 angstroms.

Total mass 30595.088 amu, Density 0.735 g/cc

Added 1680 residues.

Note the larger number of waters added, compared to solvateBox; in the case of this
solute and choice of buffer, the overall box size is increased by about 10 angstroms in
each direction.

3.6.45. solvateOct
solvateOct solute solvent buffer [aniso] [closeness]

UNIT _solute_

UNIT _solvent_

object _buffer_

NUMBER _closeness_

The solvateOct command is the same as solvateBox, except the corners of the box are
sliced off, resulting in a truncated octahedron, which typically gives a more uniform dis-
tribution of solvent around the solute. In solvateOct, when a LIST is given for the buffer
argument, four numbers are given instead of three, where the fourth is the diagonal clear-
ance. If 0.0 is given as the fourth number, the diagonal clearance resulting from the appli-
cation of the x,y,z clearances is reported. If a non-0 value is given, this may require scal-
ing up the other clearances, which is also reported.

Unless the ’aniso’ option is used, an isometric truncated octahedron is produced and
rotated to an orientation used by the sander PME code. (Note: don’t use the ’aniso’

3/3/06

LEaP Commands Page 69

option unless you are sure you know what you are doing; it is only there for expert back-
ward compatibility, and probably has no real use anymore.)

3.6.46. solvateShell
solvateShell solute solvent thickness [closeness]

UNIT solute

UNIT solvent

NUMBER thickness

NUMBER closeness

The solvateShell command adds a solvent shell to the solute UNIT. The resulting
solute/solvent UNIT will be irregular in shape since it will reflect the contours of the
solute. The solute UNIT is modified by the addition of solvent RESIDUEs. The solvent
box will be repeated in three directions to create a large solvent box that can contain the
entire solute and a shell thickness angstroms thick. The solvent RESIDUEs are then
added to the solute UNIT if they lie within the shell defined by thickness and do not over-
lap with the solute ATOMs. The optional closeness parameter can be used to control how
close solvent ATOMs can come to solute ATOMs. The default value of the closeness
argument is 1.0. Please see the solvateBox command for more details on the closeness
parameter.

>> mol = loadpdb my.pdb

>> solvateShell mol TIP3PBOX 8.0

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 23.512 28.339 28.066

Solvent unit box: 18.774 18.774 18.774

Added 147 residues.

3.6.47. source
source filename

STRING filename

This command executes commands within a text file. To display the commands as they
are read, see the verbosity command.

3.6.48. transform
transform atoms, matrix

CONT atoms

LIST matrix

Transform all of the ATOMs within atoms by the (3 × 3) or (4 × 4) matrix represented
by the nine or sixteen NUMBERs in the LIST of LISTs matrix. The general matrix looks
like:

3/3/06

LEaP Commands Page 70

r11 r12 r13 -tx

r21 r22 r23 -ty

r31 r32 r33 -tz

0 0 0 1

The matrix elements represent the intended symmetry operation. For example, a reflec-
tion in the (x, y) plane would be produced by the matrix:

1 0 0

0 1 0

0 0 -1

This reflection could be combined with a six angstrom translation along the x-axis by
using the following matrix.

1 0 0 6

0 1 0 0

0 0 -1 0

0 0 0 1

In the following example, wrB is transformed by an inversion operation:

transform wrpB {

{ -1 0 0 }

{ 0 -1 0 }

{ 0 0 -1 }

}

3.6.49. translate
translate atoms direction

CONT atoms

LIST direction

Translate all of the ATOMs within atoms by the vector defined by the three NUMBERs in
the LIST direction.

Example:

translate wrpB { 0 0 -24.53333 }

3.6.50. verbosity
verbosity level

NUMBER level

This command sets the level of output that LEaP provides the user. A value of 0 is the

3/3/06

LEaP Commands Page 71

default, providing the minimum of messages. A value of 1 will produce more output, and
a value of 2 will produce all of the output of level 1 and display the text of the script lines
executed with the source command. The following line is an example of this command:

> verbosity 2

Verbosity level: 2

3.6.51. zMatrix
zMatrix object zmatrix

CONT object

LIST matrix

The zMatrix command is quite complicated. It is used to define the external coordinates
of ATOMs within object using internal coordinates. The second parameter of the zMatrix
command is a LIST of LISTs; each sub-list has several arguments:

{ a1 a2 bond12 }

This entry defines the coordinate of a1 by placing it bond12 angstroms along the x-axis
from ATOM a2. If AT OM a2 does not have coordinates defined then ATOM a2 is placed
at the origin.

{ a1 a2 a3 bond12 angle123 }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM
a2 making an angle of angle123 degrees between a1, a2 and a3. The angle is measured in
a right hand sense and in the x-y plane. AT OMs a2 and a3 must have coordinates
defined.

{ a1 a2 a3 a4 bond12 angle123 torsion1234 }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM
a2, creating an angle of angle123 degrees between a1, a2, and a3, and making a torsion
angle of torsion1234 between a1, a2, a3, and a4.

{ a1 a2 a3 a4 bond12 angle123 angle124 orientation }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM
a2, making angles angle123 between ATOMs a1, a2, and a3, and angle124 between
AT OMs a1, a2, and a4. The argument orientation defines whether the ATOM a1 is above
or below a plane defined by the ATOMs a2, a3, and a4. If orientation is positive then a1
will be placed in such a way so that the inner product of (a3-a2) cross (a4-a2) with
(a1-a2) is positive. Otherwise a1 will be placed on the other side of the plane. This
allows the coordinates of a molecule like fluoro-chloro-bromo-methane to be defined
without having to resort to dummy atoms.

The first arguments within the zMatrix entries (a1, a2, a3, a4) are either ATOMs or
STRINGs containing names of ATOMs within object. The subsequent arguments are all

3/3/06

LEaP Commands Page 72

NUMBERs. Any ATOM can be placed at the a1 position, even those that have coordi-
nates defined. This feature can be used to provide an endless supply of dummy atoms, if
they are required. A predefined dummy atom with the name "*" (a single asterisk, no
quotes) can also be used.

There is no order imposed in the sub-lists. The user can place sub-lists in arbitrary order,
as long as they maintain the requirement that all atoms a2, a3, and a4 must have external
coordinates defined, except for entries that define the coordinate of an ATOM using only
a bond length. (See the add command for an example of the zMatrix command.)

3/3/06

Antechamber Page 73

4. Antechamber
This is a set of tools to generate files for organic molecules, which can then be read into

LEaP. The Antechamber suite was written by Junmei Wang, and is designed to be used in con-
junction with the "general AMBER force field (GAFF)" (gaff.dat) [7]. See Ref. [55] for an
explanation of the algorithms used to classify atom and bond types, to assign charges, and to esti-
mate force field parameters that may be missing in gaff.dat.

Like the traditional AMBER force fields, GAFF uses a simple harmonic function form for
bonds and angles. Unlike the traditional AMBER force fields, atom types in GAFF are more gen-
eral and cover most of the organic chemical space. In total there are 33 basic atom types and 22
special atom types. The charge methods used in GAFF can be HF/6-31G* RESP or AM1-BCC
[56,57]. All of the force field parameterizations were carried out with HF/6-31G* RESP charges.
However, in most cases, AM1-BCC, which was parameterized to reproduce HF/6-31G* RESP
charges, is recommended in large-scale calculations because of its efficiency.

The van der Waals parameters are the same as those used by the traditional AMBER force
fields. The equilibrium bond lengths and bond angles came from statistics derived from the Cam-
bridge Structural Database, and ab initio calculations at the MP2/6-31G* level. The force con-
stants for bonds and angles were estimated using empirical models, and the parameters in these
models were trained using the force field parameters in the traditional AMBER force fields. Gen-
eral torsional angle parameters were extensively applied in order to reduce the huge number of
torsional angle parameters to be derived. The force constants and phase angles in the torsional
angle parameters were optimized using our PARMSCAN package [58], with an aim to reproduce
the rotational profiles depicted by high-level ab initio calculations [geometry optimizations at the
MP2/6-31G* level, followed by single point calculations at MP4/6-311G(d,p)].

By design, GAFF is a complete force field (so that missing parameters rarely occur), it cov-
ers almost all the organic chemical space that is made up of C, N, O, S, P, H, F, Cl, Br and I.
Moreover, GAFF is totally compatible to the AMBER macromolecular force fields. We believe
that the combination of GAFF with AMBER macromolecular force fields will provide an useful
molecular mechanical tool for rational drug design, especially in binding free energy calculations
and molecular docking studies. are introduced.

4.1. Principal programs
The antechamber program itself is the main program of Antechamber: if your molecule falls

in fairly broad categories, this should be all you need to convert an input pdb file into files ready
for LEaP.

If there are missing parameters after antechamber is finished, you may want to run parmchk
to generate a frcmod template that will assist you in generating the needed parameters.

4.1.1. antechamber
This is the most important program in the package. It can perform many file conversions,

and can also assign atomic charges and atom types. As required by the input, antechamber
executes the following programs: divcon, atomtype, am1bcc, bondtype, espgen, respgen and prep-
gen. It may also generate a lot of intermediate files (all in capital letters). If there is a problem
with antechamber, you may want to run the individual programs that are described below.
Antechamber options are given here:

3/3/06

Antechamber Page 74

-help print these instructions

-i input file name

-fi input file format

-o output file name

-fo output file format

-c charge method

-cf charge file name

-nc net molecular charge (int)

-a additional file name

-fa additional file format

-ao additional file operation

crd : only read in coordinate

crg: only read in charge

name : only read in atom name

type : only read in atom type

bond : only read in bond type

-m mulitiplicity (2S+1), default is 1

-rn residue name, if not available in the input file,

default is MOL

-rf residue toplogy file name in prep input file, default

is molecule.res

-ch check file name in gaussian input file, default is

molecule

-mk divcon or mopac keyword in a pair of quotation marks

-gk gaussian keyword in a pair of quotation marks

-df use divcon flag, 1 - always use divcon if $AMBERHOME

is set (the default); 0 - not use divcon if $ACHOME is set

-at atom type, can be gaff, amber, bcc and sybyl, default

is gaff

-du check atom name duplications, can be yes(y) or no(n),

default is yes

-j atom type and bond type prediction index, default is 4

0 : no assignment

1 : atom type

2 : full bond types

3 : part bond types

4 : atom and full bond type

5 : atom and part bond type

-s status information, can be 0 (brief), 1 (the default)

and 2 (verbose)

-pf remove the intermediate files: can be yes (y) and no

(n), default is no

-i -o -fi and -fo must appear in command lines and the others are optional

List of the File Formats

3/3/06

Antechamber Page 75

file format type abbre. index | file format type abbre. index

Antechamber ac 1 | Sybyl Mol2 mol2 2

PDB pdb 3 | Modifiled PDB mpdb 4

AMBER PREP (int) prepi 5 | AMBER PREP (car) prepc 6

Gaussian Z-Matrix gzmat 7 | Gaussian Cartesian gcrt 8

Mopac Internal mopint 9 | Mopac Cartesian mopcrt 10

Gaussian Output gout 11 | Mopac Output mopout 12

Alchemy alc 13 | CSD csd 14

MDL mdl 15 | Hyper hin 16

AMBER Restart rst 17 | Jaguar Cartesian jcrt 18

Jaguar Z-Matrix jzmat 19 | Jaguar Output jout 20

Divcon Input divcrt 21 | Divcon Output divout 22

--

AMBER restart file can only be read in as additional file

List of the Charge Methods

charge method abbre. index | charge method abbre.

--

RESP resp 1 | AM1-BCC bcc 2

CM1 cm1 3 | CM2 cm2 4

ESP (Kollman) esp 5 | Mulliken mul 6

Gasteiger gas 7 | Read in charge rc 8

Write out charge wc 9

--

Examples:

antechamber -i g98.out -fi gout -o sustiva_resp.mol2 -fo mol2 -c resp

antechamber -i g98.out -fi gout -o sustiva_bcc.mol2 -fo mol2 -c bcc -j 5

antechamber -i g98.out -fi gout -o sustiva_gas.mol2 -fo mol2 -c gas

antechamber -i g98.out -fi gout -o sustiva_cm2.mol2 -fo mol2 -c cm2

antechamber -i g98.out -fi gout -o sustiva.ac -fo ac

antechamber -i sustiva.ac -fi ac -o sustiva.mpdb -fo mpdb

antechamber -i sustiva.ac -fi ac -o sustiva.mol2 -fo mol2

antechamber -i sustiva.mol2 -fi mol2 -o sustiva.gzmat -fo gzmat

antechamber -i sustiva.ac -fi ac -o sustiva_gas.ac -fo ac -c gas

antechamber -i mtx.pdb -fi pdb -o mtx.mol2 -fo mol2 -c rc -cf mtx.charge

The -rn line specifies the residue name to be used; thus, it must be one to three characters
long. The -at flag is used to specify whether atom types are to be created for the general AMBER
force field (gaff) or for atom types consistent with parm94.dat and parm99.dat (amber). Atom
types for gaff are all in lower case, and the AMBER atom types are always in upper case. If you
are using antechamber to create a modified residue for use with the standard AMBER
parm94/parm99 force fields, you should set this flag to amber; if you are looking at a more

3/3/06

Antechamber Page 76

arbitrary molecule, set this to gaff, even if you plan to use this as a ligand bound to a macro-
molecule described by the AMBER force fields.

4.1.2. parmchk
Parmchk reads in an ac file as well as a force field file (gaff.dat in $AMBER-

HOME/dat/leap/parm). It writes out a frcmod file for the missing parameters. For each atom
type, an atom type corresponding file (ATCOR.DAT) lists its replaceable general atom type. Be
careful to those problematic parameters indicated with "ATTN, need revision".

Usage: parmchk -i input file name

-o frcmod file name

-f input file format (prepi, ac ,mol2)

-p ff parmfile

-c atom type corresponding file, default is ATCOR.DAT

Example:

parmchk -i sustiva.prep -f prepi -o frcmod

This command reads in sustiva.prep and finds the missing force field parameters listed in frcmod.

4.2. A simple example for antechamber
The most common use of the antechamber program suite is to prepare input files for LEaP,

starting from a three-dimensional structure, as found in a pdb file. The antechamber suite auto-
mates the process of developing a charge model and assigning atom types, and partially auto-
mates the process of developing parameters for the various combinations of atom types found in
the molecule.

As with any automated procedure, caution should be taken to examine the output. Further-
more, the procedure, although carefully tested, has not been widely used by lots of people, so
users should certainly be on the lookout for unusual or incorrect behavior.

Suppose you have a PDB-format file for your ligand, say thiophenol, which looks like this:

ATOM 1 CG TP 1 -1.959 0.102 0.795

ATOM 2 CD1 TP 1 -1.249 0.602 -0.303

ATOM 3 CD2 TP 1 -2.071 0.865 1.963

ATOM 4 CE1 TP 1 -0.646 1.863 -0.234

ATOM 5 C6 TP 1 -1.472 2.129 2.031

ATOM 6 CZ TP 1 -0.759 2.627 0.934

ATOM 7 HE2 TP 1 -1.558 2.719 2.931

ATOM 8 S15 TP 1 -2.782 0.365 3.060

ATOM 9 H19 TP 1 -3.541 0.979 3.274

ATOM 10 H29 TP 1 -0.787 -0.043 -0.938

ATOM 11 H30 TP 1 0.373 2.045 -0.784

ATOM 12 H31 TP 1 -0.092 3.578 0.781

ATOM 13 H32 TP 1 -2.379 -0.916 0.901

(This file may be found at $AMBERHOME/test/antechamber/tp/tp.pdb). The basic command to
create a mol2 file for LEaP is just:

3/3/06

Antechamber Page 77

antechamber -i tp.pdb -fi pdb -o tp.mol2 -fo mol2 -c bcc

This command says that the input format is pdb, output format is Sybyl mol2, and the BCC
charge model is to be used. The output file is shown in the box titled tp.mol2. The format of this
file is a common one understood by many programs.

tp.mol2

@<TRIPOS>MOLECULE

TP

13 13 1 0 0

SMALL

bcc

@<TRIPOS>ATOM

1 CG -1.9590 0.1020 0.7950 ca 1 TP -0.1186

2 CD1 -1.2490 0.6020 -0.3030 ca 1 TP -0.1138

3 CD2 -2.0710 0.8650 1.9630 ca 1 TP 0.0162

4 CE1 -0.6460 1.8630 -0.2340 ca 1 TP -0.1370

5 C6 -1.4720 2.1290 2.0310 ca 1 TP -0.1452

6 CZ -0.7590 2.6270 0.9340 ca 1 TP -0.1122

7 HE2 -1.5580 2.7190 2.9310 ha 1 TP 0.1295

8 S15 -2.7820 0.3650 3.0600 sh 1 TP -0.2540

9 H19 -3.5410 0.9790 3.2740 hs 1 TP 0.1908

10 H29 -0.7870 -0.0430 -0.9380 ha 1 TP 0.1345

11 H30 0.3730 2.0450 -0.7840 ha 1 TP 0.1336

12 H31 -0.0920 3.5780 0.7810 ha 1 TP 0.1332

13 H32 -2.3790 -0.9160 0.9010 ha 1 TP 0.1432

@<TRIPOS>BOND

1 1 2 ar

2 1 3 ar

3 1 13 1

4 2 4 ar

5 2 10 1

6 3 5 ar

7 3 8 1

8 4 6 ar

9 4 11 1

10 5 6 ar

11 5 7 1

12 6 12 1

13 8 9 1

@<TRIPOS>SUBSTRUCTURE

1 TP 1 TEMP 0 **** **** 0 ROOT

3/3/06

Antechamber Page 78

You can now run parmchk to see if all of the needed force field parameters are available:

parmchk -i tp.mol2 -f mol2 -o frcmod

This yields the frcmod file:

remark goes here

MASS

BOND

ANGLE

DIHE

IMPROPER

ca-ca-ca-ha 1.1 180.0 2.0 General improper

ca-ca-ca-sh 1.1 180.0 2.0 Using default value

NONBON

In this case, there were two missing dihedral parameters from the gaff.dat file, which were
assigned a default value. (As gaff.dat continues to be developed, there should be fewer and fewer
missing parameters to be estimated by parmchk.) In rare cases, parmchk may be unable to make
a good estimate; it will then insert a placeholder (with zeros everywhere) into the frcmod file,
with the comment "ATTN: needs revision". After manually editing this to take care of the ele-
ments that "need revision", you are ready to read this residue into LEaP, either as a residue on its
own, or as part of a larger system. The following LEaP input file (leap.in) will just create a sys-
tem with thiophenol in it:

source leaprc.gaff

mods = loadAmberParams frcmod

TP = loadMol2 tp.mol2

saveAmberParm TP prmtop inpcrd

quit

You can read this into LEaP as follows:

tleap -s -f leap.in

This will yield a prmtop and inpcrd file. If you want to use this residue in the context of a larger
system, you can insert commands after the loadAmberPrep step to construct the system you want,
using standard LEaP commands.

In this respect, it is worth noting that the atom types in gaff.dat are all lower-case, whereas
the atom types in the standard AMBER force fields are all upper-case. This means that you can
load both gaff.dat and (say) parm99.dat into LEaP at the same time, and there won’t be any con-
flicts. Hence, it is generally expected that you will use one of the AMBER force fields to describe
your protein or nucleic acid, and the gaff.dat parameters to describe your ligand; as mentioned
above, gaff.dat has been designed with this in mind, i.e. to produce molecular mechanics

3/3/06

Antechamber Page 79

descriptions that are generally compatible with the AMBER macromolecular force fields.

The procedure above only works as it stands for neutral molecules. If your molecule is
charged, you need to set the -nc flag in the initial antechamber run. Also note that this procedure
depends heavily upon the initial 3D structure: it must have all hydrogens present, and the charges
computed are those for the conformation you provide, after minimization in the AM1 Hamilto-
nian. In fact, this means that you must have an reasonable all-atom initial model of your
molecule (so that it can be minimized with the AM1 Hamiltonian), and you must specify what its
net charge is. The system should really be a closed-shell molecule, since all of the atom-typing
rules assume this implicitly.

Further examples of using antechamber to create force field parameters can be found in the
$AMBERHOME/test/antechamber directory. Here are some practical tips from Junmei Wang:

(1) For the input molecules, make sure there are no open valences and the structures are rea-
sonable.

(2) Failures are most likely produced when antechamber infers an incorrect connectivity. In
such cases, you can revise by hand the connectivity information in "ac" or "mol2" files.
Systematic errors could be corrected by revising the parameters in CONNECT.TPL in
$AMBERHOME/dat/antechamber.

(3) It is a good idea to check the intermediate files in case of a program failure, and you can
run separate programs one by one. Use the "-s 2" flag to antechamber to see details of
what it is doing.

(4) Please visit amber.scripps.edu/antechamber/antechamber.html to
obtain the latest information about antechamber development and to download the latest
GAFF parameters. Please report program failures to Junmei Wang at <jwang@ency-
sive.com>.

4.3. Programs called by antechamber
The following programs are automatically called by antechamber when needed. Generally,

you should not need to run them yourself, unless problems arise and/or you want to fine-tune
what antechamber does.

4.3.1. atomtype
Atomtype reads in an ac file and assigns the atom types. You may find the default definition

files in $AMBERHOME/dat/antechamber: ATOMTYPE_AMBER.DEF (AMBER), ATOM-
TYPE_GFF.DEF (general AMBER force field). AT OMTYPE_GFF.DEF is the default definition
file.

Usage: atomtype -i input file name

-o output file name (ac)

-f input file format(ac (the default) or mol2)

-p amber or gaff or bcc or gas, it is suppressed by "-d" option

-d atom type definition file, optional

Example:

atomtype -i sustiva_resp.ac -o sustiva_resp_at.ac -f ac -p amber

3/3/06

Antechamber Page 80

This command assigns atom types for sustiva_resp.ac with amber atom type definitions. The out-
put file name is sustiva_resp_at.ac

4.3.2. am1bcc
Am1bcc first reads in an ac or mol2 file with or without assigned AM1-BCC atom types and

bond types. Then the bcc parameter file (the default, BCCPARM.DAT is in $AMBER-
HOME/dat/antechamber) is read in. An ac file with AM1-BCC charges [56,57] is written out. Be
sure the charges in the input ac file are AM1-Mulliken charges.

Usage: am1bcc -i input file name in ac format

-o output file name

-f output file format(pdb or ac, optional, default is ac)

-p bcc parm file name (optional))

-j atom and bond type judge option, default is 0)

0: No judgement

1: Atom type

2: Full bond type

3: Partial bond type

4: Atom and full bond type

5: Atom and partial bond type

Example:

am1bcc -i comp1.ac -o comp1_bcc.ac -f ac -j 4

This command reads in comp1.ac, assigns both atom types and bond types and finally performs
bond charge correction to get AM1-BCC charges. The ’-j’ option of 4, which is the default,
means that both the atom and bond type information in the input file is ignored and a full atom
and bond type assignments are performed. The ’-j’ option of 3 and 5 implies that bond type infor-
mation (single bond, double bond, triple bond and aromatic bond) is read in and only a bond type
adjustment is performed. If the input file is in mol2 format that contains the basic bond type infor-
mation, option of 5 is highly recommended. comp1_bcc.ac is an ac file with the final AM1-BCC
charges.

4.3.3. bondtype
bondtype is a program to assign the atom types and bond types according to the AM1-BCC

definitions (BCCTYPE.DEF in $AMBERHOME/dat/antechamber). This program can read an ac
file or mol2 file; the output file is an ac file with predicted atom types and bond types. You can
choose to determine to assign atom types or bond types or both. If there is some problem with the
assignment of bond types, you will get some warnings and for each problematic bond, a "!!!" is
appended at the end of the line. In initial tests, the current version works for most organic
molecules (>95% overall and >90% for charged molecules).

Usage: bondtype -i input file name

-o output file name

-f input file format (ac or mol2)

-j judge bond type level option, default is part

full full judgement

part partial judgement, only do reassignment according

3/3/06

Antechamber Page 81

to known bond type information in the input file

Example:

#! /bin/csh -fv

set mols = `/bin/ls *.ac`

foreach mol ($mols)

set mol_dir = $mol:r

antechamber -i $mol_dir.ac -fi ac -fo ac -o $mol_dir.ac -c mul

bondtype -i $mol_dir.ac -f ac -o $mol_dir.dat -j full

am1bcc -i $mol_dir.dat -o $mol_dir bcc.ac -f ac -j 0

end

exit(0)

The above script finds all the files with the extension of "ac", calculates the Mulliken charges
using antechamber, and predicts the atom and bond types with bondtype. Finally, AM1-BCC
charges are generated by running am1bcc to do the bond charge correction.

4.3.4. prepgen
Prepgen generates the prep input file from an ac file. By default, the program generates a

mainchain itself. However, you may also specify the mainchain atom in the mainchain file. From
this file, you can also specify which atoms will be deleted, and whether to do charge correction or
not. In order to generate the amino-acid-like residue (this kind of residue has one head atom and
one tail atom to be connected to other residues), you need a mainchain file. Sample mainchain
files are in $AMBERHOME/dat/antechamber.

Usage: prepgen -i input file name(ac)

-o output file name

-f output file format (car or int, default: int)

-m mainchain file name

-rn residue name (default: MOL)

-rf residue file name (default: molecule.res)

-f -m -rn -rf are optional

Examples:

prepgen -i sustiva_resp_at.ac -o sustiva_int.prep -f int -rn SUS -rf SUS.res

prepgen -i sustiva_resp_at.ac -o sustiva_car.prep -f car -rn SUS -rf SUS.res

prepgen -i sustiva_resp_at.ac -o sustiva_int_main.prep -f int -rn SUS

-rf SUS.res -m mainchain_sus.dat

prepgen -i ala_cm2_at.ac -o ala_cm2_int_main.prep -f int -rn ALA -rf ala.res

-m mainchain_ala.dat

The above commands generate different kinds of prep input files with and without specifying a
mainchain file.

3/3/06

Antechamber Page 82

4.3.5. espgen
Espgen reads in a gaussian (92,94,98,03) output file and extracts the ESP information. An

esp file for the resp program is generated.

Usage: espgen -i input file name

-o output file name

Example:

espgen -i sustiva_g98.out -o sustiva.esp

The above command reads in sustiva_g98.out and writes out sustiva.esp, which can be used by
the resp program. Note that this program replaces shell scripts formerly found on the AMBER
web site that perform equivalent tasks.

4.3.6. respgen
Respgen generates the input files for two-stage resp fitting. The current version only sup-

ports single molecule fitting. Atom equivalence is recognized automatically.

Usage: respgen -i input file name(ac)

-o output file name

-f output file format (resp1 or resp2)

resp1 - first stage resp fitting

resp2 - second stage resp fitting

Example:

respgen -i sustiva.ac -o sustiva.respin1 -f resp1

respgen -i sustiva.ac -o sustiva.respin2 -f resp2

resp -O -i sustiva.respin1 -o sustiva.respout1 -e sustiva.esp -t qout_stage1

resp -O -i sustiva.respin2 -o sustiva.respout2 -e sustiva.esp -q qout_stage1

-t qout_stage2

antechamber -i sustiva.ac -fi ac -o sustiva_resp.ac -fo ac -c rc

-cf qout_stage2

The above commands first generate the input files (sustiva.respin1 and sustiva.respin2) for resp
fitting, then do two-stage resp fitting and finally use antechamber to read in the resp charges and
write out an ac file − sustiva_resp.ac.

4.4. Miscellaneous programs
The Antechamber suite also contains some utility programs that perform various tasks in

molecular mechanical calculations. They are listed in alphabetical order.

4.4.1. crdgrow
Crdgrow reads an incomplete pdb file (at least three atoms in this file) and a prep input file,

and then generates a complete pdb file. It can be used to do residue mutation. For example, if you
want to change one protein residue to another one, you can just keep the mainchain atoms in a
pdb file and read in the prep input file of the residue to be changed, and crdgrow will generate the

3/3/06

Antechamber Page 83

coordinates of the missing atoms.

Usage: crdgrow -i input file name

-o output file name

-p prepin file name

-f prepin file format: prepi (the default)

Example:

crdgrow -i ref.pdb -o new.pdb -p sustiva_int.prep

This command reads in ref.pdb (only four atoms) and prep input file sustiva_int.prep, then gener-
ates the coordinates of the missing atoms and writes out a pdb file (new.pdb).

4.4.2. parmcal
Parmcal is an interactive program to calculate the bond length and bond angle parameters,

according to the rules outlined in [7].

Please select:

1. calculate the bond length parameter: A-B

2. calculate the bond angle parameter: A-B-C

3. exit

4.4.3. database
Database reads in a multiple sdf or mol2 file and a description file to run a set of commands

for each record sequentially. The commands are defined in the description file.

Usage: database -i database file name

-d definition file name

Example:

database -i sample_database.mol2 -d mol2.def

This command reads in a multiple mol2 database - sample_database.mol2 and a description file
mol2.def to run a set of commands (defined in mol2.def) to generate prep input files and merge
them to a single file called total.prepi. Both files are located in the following directory:
$AMBERHOME/test/antechamber/database/mol2.

3/3/06

Sander basics Introduction Page 84

5. Sander basics

5.1. Introduction.
This is a guide to sander, the Amber module which carries out energy minimization, molec-

ular dynamics, and NMR refinements. The acronym stands for Simulated Annealing with NMR-
Derived Energy Restraints, but this module is used for a variety of simulations that have nothing
to do with NMR refinement. Some general features are outlined in the following paragraphs:

(1) Sander provides direct support for several force fields for proteins and nucleic acids, and
for several water models and other organic solvents. The basic force field implemented
here has the following form, which is about the simplest functional form that preserves
the essential nature of molecules in condensed phases:

U(R) =
bonds
Σ Kr (r − req)2 bond

+
angles
Σ Kθ (θ − θ eq)2 angle

+
dihedrals

Σ Vn

2
(1 + cos[nφ − γ]) dihedral

+
atoms

i< j
Σ

Aij

R12
ij

−
Bij

Rij
6 van der Waals

(5.1)+
atoms

i< j
Σ

qiq j

ε Rij
electrostatic

"Non-additive" force fields based on atom-centered dipole polarizabilities can also be
used. These add a "polarization" term to what was given above:

(5.2)E pol = −
1

2

atom

i
Σ µ i • E(o)

i polarization

where µ i is an induced atomic dipole. In addition, charges that are not centered on atoms,
but are off-center (as for lone-pairs or "extra points") can be included in the force field.

(2) The particle-mesh Ewald (PME) procedure (or, optionally, a "true" Ewald sum) is used to
handle long-range electrostatic interactions. Long-range van der Waals interactions are
estimated by a continuum model. Biomolecular simulations in the NVE ensemble (i.e.
with Newtonian dynamics) conserve energy well over multi-nanosecond runs without
modification of the equations of motion.

(3) Two periodic imaging geometries are included: rectangular parallelepiped and truncated
octahedron (box with corners chopped off). (Sander itself can handle many other periodi-
cally-replicating boxes, but input and output support in LEaP and ptraj is only available
right now for these two.) The size of the repeating unit can be coupled to a given external
pressure, and velocities can be coupled to a given external temperature by several
schemes. The external conditions and coupling constants can be varied over time, so vari-
ous simulated annealing protocols can be specified in a simple and flexible manner.

3/3/06

Sander basics Introduction Page 85

(4) It is also possible to carry out non-periodic simulations in which aqueous solvation effects
are represented implicitly by a generalized Born/ surface area model by adding the follow-
ing two terms to the "vacuum" potential function:

(5.3)+
atoms

ij
Σ

qiq j

f gb(Rij)
+ σ A implicit solvation

The first term accounts for the polar part of solvation (free) energy via the f gb function
[59] designed to provide an approximation for the reaction field potential, and the second
represents the non-polar contribution which is taken to be proportional to the surface area
of the molecule A.

(5) Users can define internal restraints on bonds, valence angles, and torsions, and the force
constants and target values for the restraints can vary during the simulation. The relative
weights of various terms in the force field can be varied over time, allowing one to imple-
ment a variety of simulated annealing protocols in a single run.

(6) Internal restraints can be defined to be "time-averaged", that is, restraint forces are applied
based on the averaged value of an internal coordinate over the course of the dynamics tra-
jectory, not only on its current value. Alternatively, restraints can be "ensemble-averaged"
using the locally-enhanced-sampling (LES) option.

(7) Restraints can be directly defined in terms of NOESY intensities (calculated with a relax-
ation matrix technique), residual dipolar couplings, scalar coupling constants and proton
chemical shifts. There are provisions for handling overlapping peaks or ambiguous
assignments. In conjunction with distance and angle constraints, this provides a powerful
and flexible approach to NMR structural refinements.

(8) Restraints can also be defined in terms of the root-mean-square coordinate distance from
some reference structure. This allows one to bias trajectories either towards or away from
some target. Free energies can be estimated from non-equilibrium simulations based on
targetting restraints.

(9) Free energy calculations, using thermodynamic integration (TI) with a linear or non-linear
mixing of the "unperturbed" and "perturbed" Hamiltonian, can be carried out. Alterna-
tively, potentials of mean force can be computed using umbrella sampling.

(10) The empirical valence bond (EVB) scheme can be used to mix "diabatic" states into a
potential that can represent many types of chemical reactions that take place in enzymes.

(11) QMMM Calculations where part of the system can be treated quantum mechanically
allowing bond breaking and formation during a simulation. Semi-empirical and DFTB
Hamiltonians are provided.

5.2. Credits.
The annealing, "weight change," "restraints" and NMR-specific portions of sander were pri-

marily written by David Pearlman and David Case. All of the Amber crew listed on the title page
contributed to the general portions; the polarization implementation is that of Jim Caldwell, Liem
Dang, and Tom Darden, and the "targeted MD" code is from Carlos Simmerling. The pseudocon-
tact shift code was provided by Ivano Bertini of the University of Florence. A brief overview and
history of parallel implementations is given in the Installation section, as well as in Ref [3].

3/3/06

Sander basics Introduction Page 86

Particle Mesh Ewald. The Particle Mesh Ewald (PME) method was implemented originally
in Amber 3a by Tom Darden, and has been developed in subsequent versions of Amber by several
people, in particular by Tom Darden, Tom Cheatham, Mike Crowley and David Case. The PME
method not only provides a better treatment of long range electrostatics (at a modest computa-
tional cost), but can be applied in both rectangular and non-rectangular periodic boundary simula-
tions [60-63]. The generalization of this method to systems with polarizable dipoles was carried
out by Toukmaji et al. [64].

Generalized Born. When igb=1, we use the "pairwise" generalized Born model introduced
by Hawkins, Cramer and Truhlar [65,66], which is based on earlier ideas by Still and others
[59,67-69]. Radii are the Bondi radii [70], optionally with slight modifications of the different
types of hydrogen atoms [52] ; the overlap parameters are taken from the TINKER molecular
modeling package (http://tinker.wustl.edu). The effects of added monovalent salt are
included at a level that approximates the solutions of the linearized Poisson-Boltzmann equation
[71]. The implementation is by David Case, who thanks Charlie Brooks for inspiration.

When igb=2 or igb=5, modifications outlined by Onufriev, Bashford and Case are used [54].

When igb=7, a pairwise molecular volume correction described by Mongan et al. is applied.
A custom set of overlap parameters are used with this model [11].

Solvent-accessible surface areas It is also possible to carry out GB/SA simulations, using
the surface areas (SA) to approximate the cavity and van der Waals contributions to solvation.
The surface area is calculated using the LCPO (Linear Combinations of Pairwise Overlaps) model
[72].

Hybrid QM/MM. The built-in semi-empirical QM/MM support was written by Ross
Walker, Mike Crowley and David Case [73] This implementation provides support for the MNDO
[74] , AM1 [75] , PM3 [76] , MNDO-PDDG [77] , PM3-PDDG [77] and PM3-CARB1 [78]
semi-empirical Hamiltonians. The QM/MM Generalised Born implementation uses the model
described by Pellegrini and Field [79] while regular QM/MM Ewald support is based on the work
of Nam et al [80]. Support for QM/MM PME simulations was developed by Ross Walker, Mike
Crowley and David Case [73] The initial parallel implementation of this code was written by
Ross Walker. PIMD support is maintained by Wei Zhang. SCC-DFTB support was written by
Gustavo Seabra, Ross Walker and Adrian Roitberg.

5.3. File usage.

sander [-help] [-O] [-A] -i mdin -o mdout -p prmtop -c inpcrd -r restrt

-ref refc -x mdcrd -y inptraj -v mdvel -e mden -inf mdinfo -radii radii

-cpin cpin -cpout cpout -cprestrt cprestrt -mmtsb mmtsb_setup.job

−O Overwrite output files if they exist.

−A Append output files if they exist, (used mainly for replica exchange).

Here is a brief description of the files referred to above; the first five files are used for every run,
whereas the remainder are only used when certain options are chosen.

3/3/06

Sander basics Input description Page 87

file in/out purpose

mdin input control data for the min/md run
mdout output user readable state info and diagnostics

-o stdout will send output to stdout
(to the terminal) instead of to a file.

mdinfo output latest mdout-format energy info
prmtop input molecular topology, force field, periodic

box type, atom and residue names
inpcrd input initial coordinates and (optionally)

velocities and periodic box size
refc input (optional) reference coords for position

restraints; also used for targeted MD
mdcrd output coordinate sets saved over trajectory
inptraj input input coordinate sets in trajectory format, when imin=5
mdvel output velocity sets saved over trajectory
mden output extensive energy data over trajectory
restrt output final coordinates, velocity, and box

dimensions if any - for restarting run
inpdip input polarizable dipole file, when indmeth=3
rstdip output polarizable dipole file, when indmeth=3
cpin input protonation state definitions
cprestrt protonation state definitions, final protonation

states for restart (same format as cpin)
cpout output protonation state data saved over trajectory

5.4. Example input files.
Here are a couple of sample files, just to establish a basic syntax and appearance. There are

more examples of NMR-related files later in this chapter.

1. Simple restrained minimization

Minimization with Cartesian restraints
&cntrl

imin=1, maxcyc=200, (invoke minimization)
ntpr=5, (print frequency)
ntr=1, (turn on Cartesian restraints)
restraint_wt=1.0, (force constant for restraint)
restraintmask=’:1-58’, (atoms in residues 1-58 restrained)

/

3/3/06

Sander basics Input description Page 88

2. "Plain" molecular dynamics run

molecular dynamics run
&cntrl

imin=0, irest=1, ntx=5, (restart MD)
ntt=3, temp0=300.0, gamma_ln=5.0, (temperature control)
ntp=1, taup=2.0, (pressure control)
ntb=2, ntc=2, ntf=2, (SHAKE, periodic bc.)
nstlim=500000, (run for 0.5 nsec)
ntwe=100, ntwx=100, ntpr=200, (output frequency)

/

3. Self-guided Langevin dynamics run

Self-guided Langevin dynamics run
&cntrl

imin=0, irest=0, ntx=1, (start LD)
ntt=3, temp0=300.0,gamma_ln=1.0 (temperature control)
ntc=3, ntf=3, (SHAKE)
nstlim=500000, (run for 0.5 nsec)
ntwe=100, ntwx=100, ntpr=200, (output frequency)
isgld=1, tsgavg=0.2,tempsg=1.0 (SGLD)

/

3/3/06

Sander basics Input description Page 89

5.5. Overview of the information in the input file.

Section Format

Standard minimization and dy-
namics input

One or more title lines, followed by the (re-
quired) &cntrl and (optional) &pb,
&ewald, &qmmm, &amoeba or &debugf
namelist blocks. The basic input is described in
Sections 5.6 and 5.7.

Varying conditions Parameters for changing temperature, restraint
weights, etc. during the MD run. Each parame-
ter is specified by a separate &wt namelist
block, ending with &wt type=’END’, /.
This input is described in Section 5.8.

File redirection TYPE=filename lines. Section ends with the
first non-blank line which does not correspond
to a recognized redirection. This input is de-
scribed in Section 5.9.

Group information Read if ntr, ibelly or idecomp are set to non-zero
values, and if some other conditions are satis-
fied; see sections on these variables, below. This
input format is described in Appendix B.

5.6. General minimization and dynamics parameters.
Each of the variables listed below is input in a namelist statement with the namelist identi-

fier &cntrl. You can enter the parameters in any order, using keyword identifiers. Variables
that are not given in the namelist input retain their default values. Support for namelist input is
included in almost all current Fortran compilers, and is a standard feature of Fortran 90. A
detailed description of the namelist convention is given in Appendix A.

In general, namelist input consists of an arbitrary number of comment cards, followed by a
record whose first 7 characters after a " &" (e.g. " &cntrl ") name a group of variables that
can be set by name. This is followed by statements of the form " maxcyc=500, diel=2.0,
... ", and is concluded by an " / " token. The first line of input contains a title, which is then
followed by the &cntrl namelist. Note that the first character on each line of a namelist block
must be a blank.

Some of the options and variables are much more important, and commonly modified, than
are others. We hav e denoted the "common" options by printing them in boldface below. In gen-
eral, you can skip reading about the non-bold options on a first pass, and you should change these
from their defaults only if you think you know what you are doing.

3/3/06

Sander basics General parameters Page 90

5.6.1. General flags describing the calculation.

IMIN Flag to run minimization

= 0 No minimization (only do molecular dynamics; default)

= 1 Perform minimization (and no molecular dynamics)

= 5 Read in a trajectory for analysis.

Although sander will write energy information in the output files
(using ntpr), it is often desirable to calculate the energies of a set of
structures at a later point. In particular, one may wish to post-process
a set of structures using a different energy function than was used to
generate the structures. A example of this is MM-PBSA analysis,
where the explicit water is removed and replaced with a continuum
model.

When imin is set to 5 sander will expect to read a trajectory file from
the inptraj file (specified using -y on the command line), and will
perform the functions described in the mdin file for each of the struc-
tures in the trajectory file. The final structures from each minimiza-
tion will be written to the normal mdcrd file.

For example, when imin=5 and maxcyc=1000, sander will minimize
each structure in the trajectory for 1000 steps and write a minimized
coordinate set for each frame to the mdcrd file. If maxcyc=1, then
the output file can be used to extract the energies of each of the coor-
dinate sets in the inptraj file.

NMROPT

= 0 no nmr-type analysis will be done; default (Note: this variable
replaces nmrmax from previous versions, and has a slightly different
meaning.)

> 0 NMR restraints/weight changes will be read

= 2 NOESY volume restraints or chemical shift restraints will be read as
well

5.6.2. Nature and format of the input.
NTX Option to read the initial coordinates, velocities and box size from the

"inpcrd" file. The options 1-2 must be used when one is starting from mini-
mized or model-built coordinates. If an MD restrt file is used as inpcrd, then
options 4-7 may be used.

= 1 X is read formatted with no initial velocity information (default)

3/3/06

Sander basics General parameters Page 91

= 2 X is read unformatted with no initial velocity information

= 4 X and V are read unformatted.

= 5 X and V are read formatted; box information will be read if ntb>0.
The velocity information will only be used if irest=1.

= 6 X, V and BOX(1..3) are read unformatted; in other respects, this is
the same as option "5".

IREST Flag to restart the run.

= 0 No effect (default)

= 1 restart calculation. Requires velocities in coordinate input file, so
you also may need to reset NTX if restarting MD

NTRX Format of the Cartesian coordinates for restraint from file "refc". Note: the
program expects file "refc" to contain coordinates for all the atoms in the sys-
tem. A subset for the actual restraints is selected by restraintmask in the con-
trol namelist.

= 0 Unformatted (binary) form

= 1 Formatted (ascii, default) form

5.6.3. Nature and format of the output.
NTXO Format of the final coordinates, velocities, and box size (if constant volume or

pressure run) written to file "restrt".

= 0 Unformatted

= 1 Formatted (default).

NTPR Every NTPR steps energy information will be printed in human-readable form
to files "mdout" and "mdinfo". "mdinfo" is closed and reopened each time, so
it always contains the most recent energy and temperature. Default 50.

NTAVE Every NTAVE steps of dynamics, running averages of average energies and
fluctuations over the last NTAVE steps will be printed out. Default value of 0
disables this printout.

NTWR Every NTWR steps during dynamics, the "restrt" file will be written, ensuring
that recovery from a crash will not be so painful. In any case, restrt is written
ev ery NSTLIM steps for both dynamics and minimization calculations. If
NTWR<0, a unique copy of the file, restrt_nstep, is written every abs(NTWR)
steps. This option is useful if for example one wants to run free energy pertur-
bations from multiple starting points or save a series of restrt files for mini-
mization. Default 500.

IWRAP If set to 1, the coordinates written to the restart and trajectory files will be
"wrapped" into a primary box. This means that for each molecule, the image
closest to the middle of the "primary box" [with x coordinates between 0 and
a, y coordinates between 0 and b, and z coordinates between 0 and c] will be
the one written to the output file. This often makes the resulting structures
look better visually, but has no effect on the energy or forces. Performing
such wrapping, however, can mess up diffusion and other calculations. The

3/3/06

Sander basics General parameters Page 92

default (when iwrap=0) is to not perform any such manipulations; in this case
it is typical to use ptraj as a post-processing program to translate molecules
back to the primary box. You may also want to use iwrap=1 if you are
preparing a system for further runs in gibbs, since that program requires the
coordinates to be wrapped. For very long runs, setting iwrap=1 may be
required to keep the coordinate output from overflowing the trajectory file for-
mat.

NTWX Every NTWX steps the coordinates will be written to file "mdcrd". NTWX=0
inhibits all output. Default 0.

NTWV Every NTWV steps the velocities will be written to file "mdvel". NTWV=0
inhibits all output. Default 0. NTWV=-1 will write velocities into a combined
coordinate and velocity file "mdcrd" at the interval defined by NTWX. This
option is available only for binary NetCDF output (IOUTFM=1).

NTWE Every NTWE steps the energies and temperatures will be written to file
"mden" in compact form. NTWE=0 inhibits all output. Default 0.

IOUTFM Format of velocity and coordinate sets. As of Amber 9, the binary format used
in previous versions is no longer supported; binary output is now in NetCDF
trajectory format. Binary trajectory files are smaller, higher precision and
much faster to read and write than formatted trajectories. You must configure
and compile Amber with the -bintraj flag to use the NetCDF format. Note:
these values are "backwards" compared to NTRX and NTXO; this is an
ancient mistake that we are reluctant to change, since it would break existing
scripts.

= 0 Formatted (default)

= 1 Binary NetCDF trajectory

NTWPRT Coordinate/velocity archive limit flag. This flag can be used to decrease the
size of the coordinate / velocity archive files, by only including that portion of
the system of greatest interest. (E.g. one can print only the solute and not the
solvent, if so desired). The Coord/velocity archives will include:

= 0 all atoms of the system (default).

> 0 only atoms 1->NTWPRT.

IDECOMP This option is only really useful in conjunction with mm_pbsa, where it is
turned on automatically if required. The options are:

= 0 Do nothing (default).

= 1 Decompose energies on a per-residue basis; 1-4 EEL + 1-4 VDW are
added to internal (bond, angle, dihedral) energies.

= 2 Decompose energies on a per-residue basis; 1-4 EEL + 1-4 VDW are
added to EEL and VDW.

= 3 Decompose energies on a pairwise per-residue basis; the rest is equal
to "1".

= 4 Decompose energies on a pairwise per-residue basis; the rest is
equal to "2".

If decomp is switched on, residues may be chosen by the RRES and/or LRES
card. The RES card determines about which residues information is finally

3/3/06

Sander basics General parameters Page 93

output. See the mm_pbsa chapter for more information. Use of idecomp > 0
is incompatible with ntr > 0 or ibelly > 0.

5.6.4. Frozen or restrained atoms.
IBELLY Flag for belly type dynamics.

= 0 No belly run (default).

= 1 Belly run. A subset of the atoms in the system will be allowed to
move, and the coordinates of the rest will be frozen. The moving
atoms are specified bellymask. This option is not available when
igb>0. Note also that this option does not provide any significant
speed advantage, and is maintained primarily for backwards compati-
bility with older version of Amber. Most applications should use the
ntr variable instead to restrain parts of the system to stay close to
some initial configuration.

NTR Flag for restraining specified atoms in Cartesian space using a harmonic
potential. The restrained atoms are determined by the restraintmask string.
The force constant is given by restraint_wt. The coordinates are read in
"restrt" format from the "refc" file (see NTRX, above).

= 0 No position restraints (default)

= 1 MD with restraint of specified atoms

RESTRAINT_WT
The weight (in kcal/mol − Å2) for the positional restraints. The restraint is of
the form k(∆x)2, where k is the value given by this variable, and ∆x is the dif-
ference between one of the Cartesian coordinates of a restrained atom and its
reference position. There is a term like this for each Cartesian coordinate of
each restrainted atom.

RESTRAINTMASK
String that specifies the restrained atoms when ntr=1.

BELLYMASK String that specifies the moving atoms when ibelly=1. The syntax for both
restraintmask and bellymask is given in Chapter 13.5. Note that these mask
strings are limited to a maximum of 256 characters.

5.6.5. Energy minimization.
MAXCYC The maximum number of cycles of minimization. Default 1.

NCYC If NTMIN is 1 then the method of minimization will be switched from steep-
est descent to conjugate gradient after NCYC cycles. Default 10.

NTMIN Flag for the method of minimization.

= 0 Full conjugate gradient minimization. The first 4 cycles are steepest
descent at the start of the run and after every nonbonded pairlist
update. Note that the Amber7 documentation incorrectly indicated
10 cycles instead of 4. The first Amber version in which the

3/3/06

Sander basics General parameters Page 94

documentation became incorrect is unknown.

= 1 For NCYC cycles the steepest descent method is used then conjugate
gradient is switched on (default).

= 2 Only the steepest descent method is used.

= 3 The XMIN method is used, see amber8/doc/lmod.pdf.

= 4 The LMOD method is used, see amber8/doc/lmod.pdf.

DX0 The initial step length. If the initial step length is big then the minimizer will
try to leap the energy surface and sometimes the first few cycles will give a
huge energy, howev er the minimizer is smart enough to adjust itself. Default
0.01.

DRMS The convergence criterion for the energy gradient: minimization will halt
when the root-mean-square of the Cartesian elements of the gradient is less
than DRMS. Default 1.0E-4 kcal/mole A° .

5.6.6. Molecular dynamics.
NSTLIM Number of MD-steps to be performed. Default 1.

NSCM Flag for the removal of translational and rotational center-of-mass (COM)
motion at regular intervals. For non-periodic simulations, after every NSCM
steps, translational and rotational motion will be removed. For periodic sys-
tems, just the translational center-of-mass motion will be removed. This flag
is ignored for belly simulations. Default 1000.

T The time at the start (psec) this is for your own reference and is not critical.
Start time is taken from the coordinate input file if IREST=1. Default 0.0.

DT The time step (psec). Recommended MAXIMUM is .002 if SHAKE is used,
or .001 if it isn’t. Note that for temperatures above 300K, the step size should
be reduced since greater temperatures mean increased velocities and longer
distance traveled between each force evaluation, which can lead to anoma-
lously high energies and system blowup. Default 0.001.

NRESPA This variable allows the user to evaluate slowly-varying terms in the force
field less frequently. For PME, "slowly-varying" (now) means the reciprocal
sum. For generalized Born runs, the "slowly-varying" forces are those involv-
ing derivatives with respect to the effective radii, and pair interactions whose
distances are greater than the "inner" cutoff, currently hard-wired at 8 Å.
If NRESPA>1 these slowly-varying forces are evaluated every nrespa steps.
The forces are adjusted appropriately, leading to an impulse at that step. If
nrespa*dt is less than or equal to 4 fs the energy conservation is not seriously
compromised. However if nrespa*dt > 4 fs the simulation becomes less sta-
ble. Note that energies and related quantities are only accessible every nrespa
steps, since the values at other times are meaningless.

3/3/06

Sander basics General parameters Page 95

5.6.7. Self-Guided Langevin dynamics.
Self-guided Langevin dynamics (SGLD) can be used to enhance conformational search effi-

ciency in either a molecular dynamics (MD) simulation (when gamma_ln=0) or Langevin
dynamics (LD) simulation (when gamma_ln>0). This method applies a guiding force calculated
during a simulation to accelerate the systematic motion for more efficient conformational sam-
pling [81]. The guiding force can be applied to a part of a simulation system starting from atom
isgsta to atom isgend. The strength of the guiding force is defined by either tempsg or sgft. A
smaller tempsg or sgft will produce results closer to a normal MD or LD simulation. Normally,
tempsg or sgft is set to the limit that accelerates slow events to an affortable time scale.

ISGLD The default value of zero disables self-guiding; a positive value enables this
feature.

TSGAVG Local averaging time (psec) for the guiding force calculation. Default 0.2
psec. A larger value defines a slower motion to be enhanced.

TEMPSG Guiding temprature (K). Defines the strength of the guiding force in tempera-
ture unit. Default 1.0 K. The default value is recommended for a noticeable
enhancement in conformational search. Once tempsg is set, sgft will fluctuate
and be printed out in the output file.

SGFT Guiding factor. Defines the strength of the guiding force when tempsg=0.
Default 0.0. tempsg>0 will overide sgft. Because sgft varies with systems and
simulation conditions, it is recommended to read sgft values from the output
file of a SGLD simulation with tempsg=1 K. Setting tempsg=0 K and sgft=0.0
will reduce the simulation to a normal MD or LD. Only experienced users
should use the sgft variable; for most purposes, setting tempsg should be suffi-
cient.

ISGSTA The first atom index of SGLD region. Default 1.

ISGEND The last atom index of SGLD region. Default is natom.

5.6.8. Temperature regulation.
NTT Switch for temperature scaling. Note that setting ntt=0 corresponds to the

microcanonical (NVE) ensemble (which should approach the canonical one
for large numbers of degrees of freedom). Some aspects of the "weak-cou-
pling ensemble" (ntt=1) have been examined, and roughly interpolate between
the microcanonical and canonical ensembles [82,83]. The ntt=2 and 3 options
correspond to the canonical (constant T) ensemble.

= 0 Constant total energy classical dynamics (assuming that ntb<2, as
should probably always be the case when ntt=0).

= 1 Constant temperature, using the weak-coupling algorithm [84]. A
single scaling factor is used for all atoms. Note that this algorithm
just ensures that the total kinetic energy is appropriate for the desired
temperature; it does nothing to ensure that the temperature is even
over all parts of the molecule. Atomic collisions will tend to ensure
an even temperature distribution, but this is not guaranteed, and there
are many subtle problems that can arise with weak temperature

3/3/06

Sander basics General parameters Page 96

coupling [85]. Unless you are sure you know what you are doing,
please don’t use ntt=1! (This warning is especially relevant for gen-
eralized Born simulations, where there are no collisions with solvent
to aid in thermalization.) Other temperature coupling options (espe-
cially ntt=3) should be used instead.

= 2 Andersen temperature coupling scheme [86], in which imaginary
"collisions" randomize the velocities to a distribution corresponding
to temp0 ev ery vrand steps. Note that in between these "massive col-
lisions", the dynamics is Newtonian. Hence, time correlation func-
tions (etc.) can be computed in these sections, and the results aver-
aged over an initial canonical distribution. Note also that too high a
collision rate (too small a value of vrand) will slow down the speed
at which the molecules explore configuration space, whereas too low
a rate means that the canonical distribution of energies will be sam-
pled slowly. A discussion of this rate is given by Andersen [87].

= 3 Use Langevin dynamics with the collision frequency γ given by
gamma_ln, discussed below. Note that when γ has its default value
of zero, this is the same as setting ntt = 0.

TEMP0 Reference temperature at which the system is to be kept, if ntt > 0. Note that
for temperatures above 300K, the step size should be reduced since increased
distance traveled between evaluations can lead to SHAKE and other prob-
lems. Default 300.

TEMP0LES This is the target temperature for all LES particles (see Chapter 6). If
temp0les<0, a single temperature bath is used for all atoms, otherwise sepa-
rate thermostats are used for LES and non-LES particles. Default is -1, corre-
sponding to a single (weak-coupling) temperature bath.

TEMPI Initial temperature. For the initial dynamics run, (NTX .lt. 3) the velocities
are assigned from a Maxwellian distribution at TEMPI K. If TEMPI = 0.0,
the velocities will be calculated from the forces instead. TEMPI has no effect
if NTX .gt. 3. Default 0.0.

IG The seed for the random number generator. The MD starting velocity is
dependent on the random number generator seed if NTX .lt. 3 .and. TEMPI
.ne. 0.0. Default 71277.

TA UTP Time constant, in ps, for heat bath coupling for the system, if ntt = 1. Default
is 1.0. Generally, values for TAUTP should be in the range of 0.5-5.0 ps, with
a smaller value providing tighter coupling to the heat bath and, thus, faster
heating and a less natural trajectory. Smaller values of TAUTP result in
smaller fluctuations in kinetic energy, but larger fluctuations in the total
energy. Values much larger than the length of the simulation result in a return
to constant energy conditions.

GAMMA_LN The collision frequency γ , in ps-1, when ntt = 3. A simple Leapfrog integrator
is used to propagate the dynamics, with the kinetic energy adjusted to be cor-
rect for the harmonic oscillator case [88,89]. Note that it is not necessary that
γ approximate the physical collision frequency, which is about 50 ps-1 for liq-
uid water. In fact, it is often advantageous, in terms of sampling or stability of
integration, to use much smaller values, around 2 to 5 ps-1. Default is 0
[89,90].

3/3/06

Sander basics General parameters Page 97

VRAND If vrand>0 and ntt=2, the velocities will be randomized to temperature
TEMP0 every vrand steps.

VLIMIT If not equal to 0.0, then any component of the velocity that is greater than
abs(VLIMIT) will be reduced to VLIMIT (preserving the sign). This can be
used to avoid occasional instabilities in molecular dynamics runs. VLIMIT
should generally be set to a value like 20 (the default), which is well above the
most probable velocity in a Maxwell-Boltzmann distribution at room tempera-
ture. A warning message will be printed whenever the velocities are modi-
fied. Runs that have more than a few such warnings should be carefully
examined.

5.6.9. Pressure regulation.
In "constant pressure" dynamics, the volume of the unit cell is adjusted (by
small amounts on each step) to make the computed pressure approach the tar-
get pressure, pres0. Equilibration with ntp > 0 is generally necessary to adjust
the density of the system to appropriate values. Note that fluctuations in the
instantaneous pressure on each step will appear to be large (several hundred
bar), but the average value over many steps should be close to the target pres-
sure. Pressure regulation only applies when Constant Pressure periodic
boundary conditions are used (ntb = 2). Pressure coupling algorithms used in
Amber are of the "weak-coupling" variety, analogous to temperature coupling
[84]. Please note: in general you will need to equilibrate the temperature to
something like the final temperature using constant volume (ntp=0) before
switching on constant pressure simulations to adjust the system to the correct
density. If you fail to do this, the program will try to adjust the density too
quickly, and bad things (such as SHAKE failures) are likely to happen.

NTP Flag for constant pressure dynamics. This option should be set to 1 or 2 when
Constant Pressure periodic boundary conditions are used (NTB = 2).

= 0 Used with NTB not = 2 (default); no pressure scaling

= 1 md with isotropic position scaling

= 2 md with anisotropic (x-,y-,z-) pressure scaling: this should only be
used with orthogonal boxes (i.e. with all angles set to 90o).
Anisotropic scaling is primarily intended for non-isotropic systems,
such as membrane simulations, where the surface tensions are differ-
ent in different directions; it is generally not appropriate for solutes
dissolved in water.

PRES0 Reference pressure (in units of bars, where 1 bar ˜ 1 atm) at which the system
is maintained (when NTP > 0). Default 1.0.

COMP compressibility of the system when NTP > 0. The units are in 1.0E-06/bar; a
value of 44.6 (default) is appropriate for water.

TA UP Pressure relaxation time (in ps), when NTP > 0. The recommended value is
between 1.0 and 5.0 psec. Default value is 1.0, but larger values may some-
times be necessary (if your trajectories seem unstable).

3/3/06

Sander basics General parameters Page 98

5.6.10. SHAKE bond length constraints.
NTC Flag for SHAKE to perform bond length constraints [91]. (See also NTF in

the Potential function section. In particular, typically NTF = NTC.) The
SHAKE option should be used for most MD calculations. The size of the MD
timestep is determined by the fastest motions in the system. SHAKE removes
the bond stretching freedom, which is the fastest motion, and consequently
allows a larger timestep to be used. For water models, a special "three-point"
algorithm is used [92]. Consequently, to employ TIP3P set NTF = NTC = 2.

Since SHAKE is an algorithm based on dynamics, the minimizer is not aware of what
SHAKE is doing; for this reason, minimizations generally should be carried out without SHAKE.
One exception is short minimizations whose purpose is to remove bad contacts before dynamics
can begin.

For parallel versions of sander only intramolecular atoms can be constrained. Thus, such
atoms must be in the same chain of the originating PDB file.

= 1 SHAKE is not performed (default)

= 2 bonds involving hydrogen are constrained

= 3 all bonds are constrained (not available for parallel or qmmm runs in
sander)

TOL Relative geometrical tolerance for coordinate resetting in shake. Recom-
mended maximum: <0.00005 Angstrom Default 0.00001.

JFASTW Fast water definition flag. By default, the system is searched for water
residues, and special routines are used to SHAKE these systems [92].

= 0 Normal operation. Waters are identified by the default names (given
below), unless they are redefined, as described below.

= 4 Do not use the fast SHAKE routines for waters.

The following variables allow redefinition of the default residue and atom
names used by the program to determine which residues are waters.

WA TNAM The residue name the program expects for water. Default ’WAT ’.

OWTNM The atom name the program expects for the oxygen of water. Default ’O
’.

HWTNM1 The atom name the program expects for the 1st H of water. Default ’H1 ’.

HWTNM2 The atom name the program expects for the 2nd H of water. Default ’H2
’.

NOSHAKEMASK String that specifies atoms that are not to be shaken (assuming that ntc>1).
Any bond that would otherwise be shaken by virtue of the ntc flag, but which
involves an atom flagged here, will *not* be shaken. The syntax for this
string is given in Chap. 13.5. Default is an empty string, which matches noth-
ing. A typical use would be to remove SHAKE constraints from all or part of
a solute, while still shaking rigid water models like TIPnP or SPC/E. Another
use would be to turn off SHAKE constraints for the parts of the system that
are being changed with thermodynamic integration, or which are the EVB or
quantum regions of the system.

If this option is invoked, then all parts of the potential must be evaluated, that

3/3/06

Sander basics General parameters Page 99

is, ntf must be one. The code enforces this by setting ntf to 1 when a noshake-
mask string is present in the input.

If you want the noshakemask to apply to all or part of the water molecules,
you must also set jfastw=4, to turn off the special code for water SHAKE. (If
you are not shaking waters, you presumably also want to issue the "set default
FlexibleWater on" command in LEaP; see that chapter for more information.)

5.6.11. Water cap.
IVCAP Flag to control cap option. The "cap" refers to a spherical portion of water

centered on a point in the solute and restrained by a soft half-harmonic poten-
tial. For the best physical realism, this option should be combined with
igb=10, in order to include the reaction field of waters that are beyond the cap
radius.

= 0 Cap will be in effect if it is in the prmtop file (default).

= 2 Cap will be inactivated, even if parameters are present in the prmtop
file.

FCAP The force constant for the cap restraint potential.

5.6.12. NMR refinement options.
ISCALE Number of additional variables to optimize beyond the 3N structural parame-

ters. (Default = 0). At present, this is only used with residual dipolar coupling
restraints.

NOESKP The NOESY volumes will only be evaluated if mod(nstep, noeskp) = 0; other-
wise the last computed values for intensities and derivatives will be used.
(default = 1, i.e. evaluate volumes at every step)

IPNLTY

= 1 the program will minimize the sum of the absolute values of the
errors; this is akin to minimizing the crystallographic R-factor
(default).

= 2 the program will optimize the sum of the squares of the errors.

= 3 For NOESY intensities, the penalty will be of the form

awt [I(1 /6)
c − I(1 /6)

o]2.

Chemical shift penalties will be as for ipnlty=1.

MXSUB Maximum number of submolecules that will be used. This is used to deter-
mine how much space to allocate for the NOESY calculations. Default 1.

SCALM "Mass" for the additional scaling parameters. Right now they are restricted to
all have the same value. The larger this value, the slower these extra variables
will respond to their environment. Default 100 amu.

3/3/06

Sander basics General parameters Page 100

PENCUT In the summaries of the constraint deviations, entries will only be made if the
penalty for that term is greater than PENCUT. Default 0.1.

TA USW For noesy volume calculations (NMROPT = 2), intensities with mixing times
less that TAUSW (in seconds) will be computed using perturbation theory,
whereas those greater than TAUSW will use a more exact theory. See the the-
ory section (below) for details. To always use the "exact" intensities and
derivatives, set TAUSW = 0.0; to always use perturbation theory, set TAUSW
to a value larger than the largest mixing time in the input. Default is TAUSW
of 0.1 second, which should work pretty well for most systems.

5.7. Potential function parameters
The parameters in this section generally control what sort of force field (or potential func-

tion) is used for the simulation.

5.7.1. Generic parameters
NTF Force evaluation. Note: If SHAKE is used (see NTC), it is not necessary to

calculate forces for the constrained bonds.

= 1 complete interaction is calculated (default)

= 2 bond interactions involving H-atoms omitted (use with NTC=2)

= 3 all the bond interactions are omitted (use with NTC=3)

= 4 angle involving H-atoms and all bonds are omitted

= 5 all bond and angle interactions are omitted

= 6 dihedrals involving H-atoms and all bonds and all angle interactions
are omitted

= 7 all bond, angle and dihedral interactions are omitted

= 8 all bond, angle, dihedral and non-bonded interactions are omitted

NTB Periodic boundary. If NTB .EQ. 0 then a boundary is NOT applied regardless
of any boundary condition information in the topology file. The value of NTB
specifies whether constant volume or constant pressure dynamics will be used.
Options for constant pressure are described in a separate section below.

= 0 no periodicity is applied and PME is off

= 1 constant volume (default)

= 2 constant pressure

If NTB .NE. 0, there must be a periodic boundary in the topology file. Con-
stant pressure is not used in minimization (IMIN=1, above).

For a periodic system, constant pressure is the only way to equilibrate density
if the starting state is not correct. For example, the solvent packing scheme
used in LEaP can result in a net void when solvent molecules are subtracted
which can aggregate into "vacuum bubbles" in a constant volume run.
Another potential problem are small gaps at the edges of the box. The upshot

3/3/06

Sander basics Potential function Page 101

is that almost every system needs to be equilibrated at constant pressure
(ntb=2, ntp>0) to get to a proper density. But be sure to equilibrate first (at
constant volume) to something close to the final temperature, before turning
on constant pressure.

DIELC Dielectric multiplicative constant for the electrostatic interactions. Default is
1.0. Please note this is NOT related to dielectric constants for generalized
Born simulations.

CUT This is used to specify the nonbonded cutoff, in Angstroms. For PME, the
cutoff is used to limit direct space sum, and the default value of 8.0 is usually
a good value. When igb>0, the cutoff is used to truncate nonbonded pairs (on
an atom-by-atom basis); here a larger value than the default is generally
required. A separate parameter (RGBMAX) controls the maximum distance
between atom pairs that will be considered in carrying out the pairwise sum-
mation involved in calculating the effective Born radii, see the generalized
Born section below.

SCNB 1-4 vdw interactions are divided by SCNB. Default 2.0.

SCEE 1-4 electrostatic interactions are divided by SCEE; the 1991 and previous
force fields used 2.0, while the 1994 force field uses 1.2. Default is 1.2.

NSNB Determines the frequency of nonbonded list updates when igb=0 and
nbflag=0; see the description of nbflag for more information. Default is 25.

IPOL When set to 1, use a polarizable force field. See Section 5.7.5 for more infor-
mation. Default is 0.

IFQNT Flag for QM/MM run; if set to 1, you must also include a &qmmm namelist.
See Section 6.4 for details on this option. Default is 0.

IGB Flag for using the generalized Born or Poisson-Boltzmann implicit solvent
models. See Sections 6.1 and 6.2 for information about using this option.
Default is 0.

IEVB If set to 1, use the empirical valence bond method to compute energies and
forces. See Section 6.3 for information about this option. Default is 0.

IAMOEBA Flag for using the amoeba polarizable potentials of Ren and Ponder [8,9].
When this option is set to 1, you need to prepare an amoeba namelist with
additional parameters. Also, the prmtop file is built in a special way. See
Section 6.14 for more information about this option. Default is 0.

5.7.2. Particle Mesh Ewald.
The Particle Mesh Ewald (PME) method is always "on", unless ntb = 0. PME is a fast

implementation of the Ewald summation method for calculating the full electrostatic energy of a
unit cell (periodic box) in a macroscopic lattice of repeating images. As implemented, the PME
in Amber bypasses the "old" pairlist creation and nonbonded energy and force evaluation, calling
special PME functions to calculate the Lennard-Jones and electrostatic interactions. The PME
method is fast since the reciprocal space Ewald sums are B-spline interpolated on a grid and since
the convolutions necessary to evaluate the sums are calculated via fast Fourier transforms. Note
that the accuracy of the PME is related to the density of the charge grid (NFFT1, NFFT2, and
NFFT3), the spline interpolation order (ORDER), and the direct sum tolerance (DSUM_TOL);

3/3/06

Sander basics Potential function Page 102

see the descriptions below for more information.

The &ewald namelist is read immediately after the &cntrl namelist. We hav e tried hard
to make the defaults for these parameters appropriate for solvated simulations. Please take care
in changing any values from their defaults. The &ewald namelist has the following variables:

NFFT1, NFFT2, NFFT3
These give the size of the charge grid (upon which the reciprocal sums are
interpolated) in each dimension. Higher values lead to higher accuracy (when
the DSUM_TOL is also lowered) but considerably slow the calculation. Gen-
erally it has been found that reasonable results are obtained when NFFT1,
NFFT2 and NFFT3 are approximately equal to A, B and C, respectively, lead-
ing to a grid spacing (A/NFFT1, etc) of 1.0 A° . Significant performance
enhancement in the calculation of the fast Fourier transform is obtained by
having each of the integer NFFT1, NFFT2 and NFFT3 values be a product of
powers of 2, 3, and 5. If the values are not given, the program will chose val-
ues to meet these criteria.

ORDER The order of the B-spline interpolation. The higher the order, the better the
accuracy (unless the charge grid is too coarse). The minimum order is 3. An
order of 4 (the default) implies a cubic spline approximation which is a good
standard value. Note that the cost of the PME goes as roughly the order to the
third power.

VERBOSE Standard use is to have VERBOSE = 0. Setting VERBOSE to higher values
(up to a maximum of 3) leads to voluminous output of information about the
PME run.

EW_TYPE Standard use is to have EW_TYPE = 0 which turns on the particle mesh
ew ald (PME) method. When EW_TYPE = 1, instead of the approximate,
interpolated PME, a regular Ewald calculation is run. The number of recipro-
cal vectors used depends upon RSUM_TOL, or can be set by the user. The
exact Ewald summation is present mainly to serve as an accuracy check
allowing users to determine if the PME grid spacing, order and direct sum tol-
erance lead to acceptable results. Although the cost of the exact Ewald
method formally increases with system size at a much higher rate than the
PME, it may be faster for small numbers of atoms (< 500). For larger,
macromolecular systems, with > 500 atoms, the PME method is significantly
faster.

DSUM_TOL This relates to the width of the direct sum part of the Ewald sum, requiring
that the value of the direct sum at the Lennard-Jones cutoff value (specified in
CUT as during standard dynamics) be less than DSUM_TOL. In practice it
has been found that the relative error in the Ewald forces (RMS) due to cut-
ting off the direct sum at CUT is between 10.0 and 50.0 times DSUM_TOL.
Standard values for DSUM_TOL are in the range of 10−6 to 10−5, leading to
estimated RMS deviation force errors of 0.00001 to 0.0005. Default is 10−5.

RSUM_TOL This serves as a way to generate the number of reciprocal vectors used in an
Ewald sum. Typically the relative RMS reciprocal sum error is about 5-10
times RSUM_TOL. Default is 5 x 10−5.

MLIMIT(1,2,3) This allows the user to explicitly set the number of reciprocal vectors used in
a regular Ewald run. Note that the sum goes from -MLIMIT(2) to MLIMIT(2)
and -MLIMIT(3) to MLIMIT(3) with symmetry being used in first dimension.

3/3/06

Sander basics Potential function Page 103

Note also the sum is truncated outside an automatically chosen sphere.

EW_COEFF Ewald coefficient, in Å−1. Default is determined by dsum_tol and cutoff. If it
is explicitly inputed then that value is used, and dsum_tol is computed from
ew_coeff and cutoff.

NBFLAG If nbflag = 0, construct the direct sum nonbonded list in the "old" way, i.e.
update the list every nsnb steps. If nbflag = 1 (the default when imin = 0 or
ntb > 0), nsnb is ignored, and the list is updated whenever any atom has
moved more than 1/2 skinnb since the last list update.

SKINNB Width of the nonbonded "skin". The direct sum nonbonded list is extended to
cut + skinnb, and the van der Waals and direct electrostatic interactions are
truncated at cut. Default is 2.0 Å. Use of this parameter is required for
energy conservation, and recommended for all PME runs.

NBTELL If nbtell = 1, a message is printed when any atom has moved far enough to
trigger a list update. Use only for debugging or analysis. Default of 0 inhibits
the message.

NETFRC The basic "smooth" PME implementation used here does not necessarily con-
serve momentum. If netfrc = 1, (the default) the total force on the system is
artificially removed at every step. This parameter is set to 0 if minimization is
requested, which implies that the gradient is an accurate derivative of the
energy. You should only change this parameter if you really know what you
are doing.

VDWMETH Determines the method used for van der Waals interactions beyond those
included in the direct sum. A value of 0 includes no correction; the default
value of 1 uses a continuum model correction for energy and pressure.

EEDMETH Determines how the switch function for the direct sum Coulomb interaction is
evaluated. The default value of 1 uses a cubic spline. A value of 2 implies a
linear table lookup. A value of three implies use of an "exact" subroutine call.
When eedmeth=4, no switch is used (i.e. the bare Coulomb potential is evalu-
ated in the direct sum, cut off sharply at CUT). When eedmeth=5, there is no
switch, and a distance-dependent dielectric is used (i.e. the distance depen-
dence is 1/r2 rather than 1/r). The last two options are intended for non-peri-
odic calculations, where no reciprocal term is computed.

EEDTBDNS Density of spline or linear lookup table, if eedmeth is 1 or 2. Default is 500
points per unit.

COLUMN_FFT 1 or 0 flag to turn on or off, respectively, column-mode fft for parallel runs.
The default mode is slab mode which is efficient for low processor counts.
The column method can be faster for larger processor counts since there can
be more columns than slabs and the communications pattern is less congested.
This flag has no effect on non-parallel runs. Users should test the efficiency of
the method in comparison to the default method before commiting a long run
to the method. Default is 0 (off).

3/3/06

Sander basics Potential function Page 104

5.7.3. Using IPS for the calculation of nonbonded interactions
Isotropic Periodic Sum (IPS) is a method for long-range interaction calculation [93]. Unlike

Ewald method, which uses periodic boundary images to calculate long range interactions, IPS
uses isotropic periodic images of a local region to calculate the long-range contribution beyond
the cutoff distance cut.

IPS Flag to control nonbonded interaction calculation method. The cut value will
be used to define the IPS radius. When IPS is used for electrostatic interac-
tion, PME will be turned off.

= 0 IPS will not be used (default).

= 1 IPS will be used for both electrostatic and VDW interactions.

= 2 IPS will be used only for electrostatic interactions.

= 3 IPS will be used only for VDW interactions.

5.7.4. Extra point options
Several parameters deal with "extra-points" (sometimes called lone-pairs), which are force

centers that are not at atomic positions. These are currently defined as atoms with "EP" in their
names. These input variables are really only for the convenience of force-field developers; do not
change the defaults unless you know what you are doing, and have read the code. These variables
are set in the &ewald namelist.

FRAMEON If frameon is set to 1, (default) the bonds, angles and dihedral interactions
involving the lone pairs/extra points are removed except for constraints added
during parm. The lone pairs are kept in ideal geometry relative to local atoms,
and resulting torques are transferred to these atoms. To treat extra points as
regular atoms, set frameon=0.

CHNGMASK If chngmask=1 (default), new 1-1, 1-2, 1-3 and 1-4 interactions are calcu-
lated. An extra point belonging to an atom has a 1-1 interaction with it, and
participates in any 1-2, 1-3 or 1-4 interaction that atom has.

For example, suppose (excusing the geometry) C1,C2,C3,C4 form a dihedral
and each has 1 extra point attached as below

C1------C2------C3------C4

| | | |

| | | |

Ep1 Ep2 Ep3 Ep4

The 1-4 interactions include C1−C4, Ep1−C4, C1−Ep4, and Ep1−Ep4. (To
see a printout of all 1-1, 1-2, 1-3 and 1-4 interactions set verbose=1.) These
interactions are masked out of nonbonds. Thus the amber mask list is rebuilt
from these 1-1, 1-2, 1-3 and 1-4 pairs.

A separate list of 1-4 nonbonds is then compiled. This list does not agree in
general with the above 1-4, since a 1-4 could also be a 1-3 if its in a ring. See
the ephi() routine for the precise algorithm involved here. The list of 1-4

3/3/06

Sander basics Potential function Page 105

nonbonds is printed if verbose=1.

5.7.5. Polarizable potentials.
The following parameters are relevant for polarizable potentials, that is, when ipol is set to

1 in the &cntrl namelist. These variables are set in the &ewald namelist.

INDMETH If indmeth is 0, 1, or 2 then the nonbond force is called iteratively until suc-
cessive estimates of the induced dipoles agree to within DIPTOL (default
0.0001 debye) in the root mean square sense. The difference between indmeth
= 0, 1, or 2 hav e to do with the level of extrapolation (1st, 2nd or 3rd-order)
used from previous time steps for the initial guess for dipoles to begin the iter-
ative loop. So far 2nd order (indmeth=1) seems to work best.

If indmeth = 3, use a Car-Parinello scheme wherein dipoles are assigned a fic-
titious mass and integrated each time step. This is much more efficient and is
the current default. Note that this method is unstable for dt > 1 fs.

DIPTOL Convergence criterion for dipoles in the iterative methods. Default is 0.0001
Debye.

MAXITER For iterative methods (indmeth<3), this is the maximum number of iterations
allowed per time step. Default is 20.

DIPMASS The fictitious mass assigned to dipoles. Default value is 0.33, which works
well for 1fs time steps. If dipmass is set much below this, the dynamics are
rapidly unstable. If set much above this the dynamics of the system are
affected.

DIPTAU This is used for temperature control of the dipoles (for indmeth=3). If diptau
is greater than 10 (ps units) temperature control of dipoles is turned off.
Experiments so far indicate that running the system in NVE with no tempera-
ture control on induced dipoles leads to a slow heating, barely noticeable on
the 100ps time scale. For runs of length 10ps, the energy conservation with
this method rivals that of SPME for standard fixed charge systems. For long
runs, we recommend setting a weak temperature control (e.g. 9.99 ps) on
dipoles as well as on the atoms. Note that to achieve good energy conservation
with iterative method, the diptol must be below 10−7 debye, which is much
more expensive. Default is 11 ps (i.e. default is turned off).

IRSTDIP If indmeth=3, a restart file for dipole positions and velocities is written along
with the restart for atomic coordinates and velocities. If irstdip=1, the dipolar
positions and velocities from the inpdip file are read in. If irstdip=0, an itera-
tive method is used for step 1, after which Car-Parrinello is used.

SCALDIP To scale 1-4 charge-dipole and dipole-dipole interactions the same as 1-4
charge-charge (i.e. divided by scee) set scaldip=1 (default). If scaldip=0 the
1-4 charge-dipole and dipole-dipole interactions are treated the same as other
dipolar interactions (i.e. divided by 1).

3/3/06

Sander basics Potential function Page 106

5.7.6. Dipole Printing
By including a &dipoles namelist containing a series of groups, at the end of the input

file, the printing of permanent, induced and total dipoles is enabled.

The X, Y and Z components of the dipole (in debye) for each group will be written to
mdout every NTPR steps. In order to avoid ambiguity with charged groups all of the dipoles for a
given group are calculated with respect to the centre of mass of that group.

It should be noted that the permanent, inducible and total dipoles will be printed regardless
of whether a polarizable potential is in use. However, only the permanent dipole will have any
physical meaning when non-polarizable potentials are in use.

It should also be noted that the groups used in the dipole printing routines are not exclusive
to these routines and so the dipole printing procedure can only be used when group input is not in
use for something else (i.e. restraints).

5.8. Weight change information.
This section of information is read (if NMROPT > 0) as a series of namelist specifications,

with name "&wt". This namelist is read repeatedly until a namelist &wt statement is found with
TYPE=END.

3/3/06

Sander basics Weight change information Page 107

Overview of weight change variables
variable description

TYPE Defines quantity being varied; valid options are list-
ed below.

ISTEP1,ISTEP2 This change is applied over steps/iterations ISTEP1
through ISTEP2. If ISTEP2 = 0, this change will
remain in effect from step ISTEP1 to the end of the
run at a value of VALUE1 (VALUE2 is ignored in
this case). (default= both 0)

VALUE1,VALUE2 Values of the change corresponding to ISTEP1 and
ISTEP2, respectively. If ISTEP2=0, the change is
fixed at VALUE1 for the remainder of the run, once
step ISTEP1 is reached.

IINC If IINC > 0, then the change is applied as a step
function, with IINC steps/iterations between each
change in the target VALUE (ignored if ISTEP2=0).
If IINC =0, the change is done continuously. (de-
fault=0)

IMULT If IMULT=0, then the change will be linearly inter-
polated from VALUE1 to VALUE2 as the step
number increases from ISTEP1 to ISTEP2. (de-
fault)

If IMULT=1, then the change will be effected by a
series of multiplicative scalings, using a single fac-
tor, R, for all scalings. i.e.

VALUE2 = (R**INCREMENTS) * VALUE1.
INCREMENTS is the number of times the target
value changes, which is determined by ISTEP1, IS-
TEP2, and IINC.

The remainder of this section describes the options for the TYPE parameter. For a few
types of cards, the meanings of the other variables differ from that described above; such differ-
ences are noted below. Valid Options for TYPE (you must use uppercase) are:

BOND Varies the relative weighting of bond energy terms.

ANGLE Varies the relative weighting of valence angle energy terms.

TORSION Varies the relative weighting of torsion (and J-coupling) energy terms. Note
that any restraints defined in the input to the PARM program are included in

3/3/06

Sander basics Weight change information Page 108

the above. Improper torsions are handled separately (IMPROP).

IMPROP Varies the relative weighting of the "improper" torsional terms. These are not
included in TORSION.

VDW Varies the relative weighting of van der Waals energy terms. This is equiv-
alent to changing the well depth (epsilon) by the given factor.

HB Varies the relative weighting of hydrogen-bonding energy terms.

ELEC Varies the relative weighting of electrostatic energy terms.

NB Varies the relative weights of the non-bonded (VDW, HB, and ELEC) terms.

ATTRACT Varies the relative weights of the attractive parts of the van der waals and h-
bond terms.

REPULSE Varies the relative weights of the repulsive parts of the van der waals and h-
bond terms.

RSTAR Varies the effective van der Waals radii for the van der Waals (VDW) interac-
tions by the given factor. Note that this is done by changing the relative attrac-
tive and repulsive coefficients, so ATTRACT/REPULSE should not be used
over the same step range as RSTAR.

INTERN Varies the relative weights of the BOND, ANGLE and TORSION terms.
"Improper" torsions (IMPROP) must be varied separately.

ALL Varies the relative weights of all the energy terms above (BOND, ANGLE,
TORSION, VDW, HB, and ELEC; does not affect RSTAR or IMPROP).

REST Varies the relative weights of *all* the NMR restraint energy terms.

RESTS Varies the weights of the "short-range" NMR restraints. Short- range restraints
are defined by the SHORT instruction (see below).

RESTL Varies the weights of any NMR restraints which are not defined as "short
range" by the SHORT instruction (see below). When no SHORT instruction is
given, RESTL is equivalent to REST.

NOESY Varies the overall weight for NOESY volume restraints. Note that this value
multiplies the individual weights read into the "awt" array. (Only if
NMROPT=2; see Section 4 below).

SHIFTS Varies the overall weight for chemical shift restraints. Note that this value
multiplies the individual weights read into the "wt" array. (Only if
NMROPT=2; see section 4 below).

SHORT Defines the short-range restraints. For this instruction, ISTEP1, ISTEP2,
VALUE1, and VALUE2 have different meanings. A short-range restraint can
be defined in two ways.

(1) If the residues containing each pair of bonded atoms comprising the
restraint are close enough in the primary sequence:

ISTEP1 ≤ ABS(delta_residue) ≤ ISTEP2,
where delta_residue is the difference in the numbers of the residues contain-
ing the pair of bonded atoms.

(2) If the distances between each pair of bonded atoms in the restraint fall
within a prescribed range:

VALUE1 ≤ distance ≤ VALUE2.

3/3/06

Sander basics Weight change information Page 109

Only one SHORT command can be issued, and the values of ISTEP1,
ISTEP2, VALUE1, and VALUE2 remain fixed throughout the run. However,
if IINC>0, then the short-range interaction list will be re-evaluated every IINC
steps.

TGTRMSD Varies the RMSD target value for targeted MD.

TEMP0 Varies the target temperature TEMP0.

TEMP0LES Varies the LES target temperature TEMP0LES.

TA UTP Varies the coupling parameter, TAUTP, used in temperature scaling when tem-
perature coupling options NTT=1 is used.

CUT Varies the non-bonded cutoff distance.

NSTEP0 If present, this instruction will reset the initial value of the step counter
(against which ISTEP1/ISTEP2 and NSTEP1/NSTEP2 are compared) to the
value ISTEP1. An NSTEP0 instruction only has an effect at the beginning of a
run. For this card (only) ISTEP2, VALUE1, VALUE2 and IINC are ignored.
If this card is omitted, NSTEP0 = 0. This card can be useful for simulation
restarts, where NSTEP0 is set to the final step on the previous run.

STPMLT If present, the NMR step counter will be changed in increments of STPMLT
for each actual dynamics step. For this card, only VALUE1 is read. ISTEP1,
ISTEP2, VALUE2, IINC, and IMULT are ignored. Default = 1.0.

DISAVE

ANGAVE

TORAVE If present, then by default time-averaged values (rather than instantaneous val-
ues) for the appropriate set of restraints will be used. DISAVE controls dis-
tance data, ANGAVE controls angle data, TORAVE controls torsion data.

See below for the functional form used in generating time-averaged data.

For these cards: VALUE1 = τ (characteristic time for exponential decay)
VALUE2 = POWER (power used in averaging; the nearest integer of value2 is
used)

Note that the range (ISTEP1→ISTEP2) applies only to TAU; The value of
POWER is not changed by subsequent cards with the same ITYPE field, and
time-averaging will always be turned on for the entire run if one of these cards
appears.

Note also that, due to the way that the time averaged internals are calculated,
changing τ at any time after the start of the run will only affect the relative
weighting of steps occurring after the change in τ .

Separate values for τ and POWER are used for bond, angle, and torsion aver-
aging.

The default value of τ (if it is 0.0 here) is 1.0D+6, which results in no expo-
nential decay weighting. Any value of τ ≥ 1.D+6 will result in no exponential
decay.
If DISAVE,ANGAVE, or TORAVE is chosen, one can still force use of an
instantaneous value for specific restraints of the particular type (bond, angle,
or torsion) by setting the IFNTYP field to "1" when the restraint is defined
(IFNTYP is defined in the DISANG file).

3/3/06

Sander basics Weight change information Page 110

If time-averaging for a particular class of restraints is being performed, all
restraints of that class that are being averaged (that is, all restraints of that
class except those for which IFNTYP=1) *must* have the same values of
NSTEP1 and NSTEP2 (NSTEP1 and NSTEP2 are defined below).

(For these cards, IINC and IMULT are ignored)

See the discussion of time-averaged restraints following the input descrip-
tions.

DISAVI

ANGAVI

TORAVI ISTEP1: Ignored.

ISTEP2: Sets IDMPAV . If IDMPAV > 0, and a dump file has been specified
(DUMPAVE is set in the file redirection section below), then the time-aver-
aged values of the restraints will be written every IDMPAV steps. Only one
value of IDMPAV can be set (corresponding to the first DIS-
AVI/ANGAVI/TORAVI card with ISTEP2 > 0), and all restraints (even those
with IFNTYP=1) will be "dumped" to this file every IDMPAV steps. The val-
ues reported reflect the current value of τ .

VALUE1: The integral which gives the time-averaged values is undefined for
the first step. By default, for each time-averaged internal, the integral is
assigned the current value of the internal on the first step. If VALUE1≠0, this
initial value of internal r is reset as follows:

-1000. < VALUE1 < 1000.: Initial value = r_initial + VALUE

VALUE1 <= -1000.: Initial value = r_target + 1000.

1000. <= VALUE1 : Initial value = r_target - 1000.

r_target is the target value of the internal, given by R2+R3 (or just R3, if R2 is
0). VALUE1 is in angstroms for bonds, in degrees for angles.

VALUE2: This field can be used to set the value of τ used in calculating the
time-averaged values of the internal restraints reported at the end of a simula-
tion (if LISTOUT is specified in the redirection section below). By default,
no exponential decay weighting is used in calculating the final reported val-
ues, regardless of what value of τ was used during the simulation. If
VALUE2>0, then τ = VALUE2 will be used in calculating these final reported
av erages. Note that the value of VALUE2 = τ specified here only affects the
reported averaged values in at the end of a simulation. It does not affect the
time-averaged values used during the simulation (those are changed by the
VALUE1 field of DISAVE, ANGAVE and TORAVE instructions).

IINC: If IINC = 0, then forces for the class of time-averaged restraints will be
calculated exactly as (dE/dr_ave) (dr_ave/dx). If IINC = 1, then then forces
for the class of time-averaged restraints will be calculated as (dE/dr_ave)
(dr(t)/dx). Note that this latter method results in a non-conservative force, and
does not integrate to a standard form. But this latter formulation helps avoid
the large forces due to the (1+i) term in the exact derivative calculation--and
may avert instabilities in the molecular dynamics trajectory for some systems.
See the discussion of time-averaged restraints following the input description.

3/3/06

Sander basics Weight change information Page 111

Note that the DISAVI, ANGAVI, and TORAVI instructions will have no affect
unless the corresponding time average request card (DISAVE, ANGAVE or
TORAVE, respectively) is also present.

DUMPFREQ Istep1 is the only parameter read, and it sets the frequency at which the coor-
dinates in the distance or angle restraints are dumped to the file specified by
the DUMPAVE command in the I/O redirection section.

(For these cards, ISTEP1 and IMULT are ignored).

END END of this section.

NOTES:

(1) All weights are relative to a default of 1.0 in the standard force field.

(2) Weights are not cumulative.

(3) For any range where the weight of a term is not modified by the above, the weight reverts
to 1.0. For any range where TEMP0, SOFTR or CUTOFF is not specified, the value of
the relevant constant is set to that specified in the input file.

(4) If a weight is set to 0.0, it is set internally to 1.0D-7. This can be overridden by setting
the weight to a negative number. In this case, a weight of exactly 0.0 will be used. How-
ever, if any weight is set to exactly 0.0, it cannot be changed again during this run of the
program.

(5) If two (or more) cards change a particular weight over the same range, the weight given
on the last applicable card will be the one used.

(6) Once any weight change for which NSTEP2=0 becomes active (i.e. one which will be
effective for the remainder of the run), the weight of this term cannot be further modified
by other instructions.

(7) Changes to RSTAR result in exponential weighting changes to the attractive and repulsive
terms (proportional to the scale factor**6 and **12, respectively). For this reason, scaling
RSTAR to a very small value (e.g. ≤0.1) may result in a zeroing-out of the vdw term.

5.9. File redirection commands.
Input/output redirection information can be read as described here. Redirection cards must

follow the end of the weight change information. Redirection card input is terminated by the first
non-blank line which does not start with a recognized redirection TYPE (e.g. LISTIN, LISTOUT,
etc.).

The format of the redirection cards is
TYPE = filename

where TYPE is any valid redirection keyword (see below), and filename is any character string.
The equals sign ("=") is required, and TYPE must be given in uppercase letters.

3/3/06

Sander basics File redirection commands Page 112

Valid redirection keywords are:

LISTIN An output listing of the restraints which have been read, and their deviations
from the target distances before the simulation has been run. By default, this
listing is not printed. If POUT is used for the filename, these deviations will
be printed in the normal output file.

LISTOUT An output listing of the restraints which have been read, and their deviations
from the target distances _after the simulation has finished. By default, this
listing is not printed. If POUT is used for the filename, these deviations will
be printed in the normal output file.

DISANG The file from which the distance and angle restraint information described
below (Section 4) will be read.

NOESY File from which NOESY volume information (Section 5), if any, will be read.

SHIFTS File from which chemical shift information (Section 6), if any, will be read.

PCSHIFT File from which paramagnetic shift information (Section 6), if any, will be
read.

DIPOLE File from which residual dipolar couplings (Section 7), if any, will be read.

DUMPAVE File to which the time-averaged values of all restraints will be written. If DIS-
AVI / ANGAVI / TORAVI has been used to set IDMPAV≠0, then averaged
values will be output. If the DUMPFREQ command has been used, the
instantaneous values will be output.

3/3/06

Using Sander Generalized Born Page 113

6. Using Sander
This chapter provides a number of sections describing how to use sander for particular

types of problems. It should be read in conjunction with the previous chapter.

6.1. The Generalized Born/Surface Area Model
The generalized Born solvation model can be used instead of explicit water for non-polariz-

able force fields such as ff94 or ff99. To estimate the total solvation free energy of a molecule,
∆Gsolv, one typically assumes that it can be decomposed into the "electrostatic" and "non-electro-
static" parts:

(6.1)∆Gsolv = ∆Gel + ∆Gnonel,

where ∆Gnonel is the free energy of solvating a molecule from which all charges have been
removed (i.e. partial charges of every atom are set to zero), and ∆Gel is the free energy of first
removing all charges in the vacuum, and then adding them back in the presence of a continuum
solvent environment. Generally speaking, ∆Gnonel comes from the combined effect of two types
of interaction: the favorable van der Waals attraction between the solute and solvent molecules,
and the unfavorable cost of breaking the structure of the solvent (water) around the solute. In the
current Amber codes, ∆Gnonel is taken to be proportional to the total solvent accessible surface
area (SA) of the molecule, with a proportionality constant derived from experimental solvation
energies of small non-polar molecules, and uses a fast LCPO algorithm [72] to compute an ana-
lytical approximation to the surface accessible area of the molecule.

The Poisson-Boltzmann approach described in the next section has traditionally been used
in calculating ∆Gel . Howev er, in molecular dynamics applications, the associated computational
costs are often very high, as the Poisson-Boltzmann equation needs to be solved every time the
conformation of the molecule changes. Amber developers have pursued an alternative approach,
the analytic generalized Born (GB) method, to obtain a a reasonable, computationally efficient
estimate of ∆Gel to be used in molecular dynamics simulations. The methodology has become
popular [59,69,94-99], especially in molecular dynamics applications [53,54,100,101], due to its
relative simplicity and computational efficiency, compared to the more standard numerical solu-
tion of the Poisson-Boltzmann equation. Within Amber GB models, each atom in a molecule is
represented as a sphere of radius ρ i with a charge qi at its center; the interior of the atom is
assumed to be filled uniformly with a material of dielectric constant of 1. The molecule is sur-
rounded by a solvent of a high dielectric ε w (80 for water at 300 K). The GB model approximates
∆Gel by an analytical formula [59,71],

(6.2)∆Gel ≈ ∆Ggb = − 1
2

ij
Σ

qiq j

fGB(rij, Ri, R j)
⎛
⎝
1 −

e−κ fgbij

ε w

⎞
⎠

where rij is the distance between atoms i and j, the Ri are the so-called effective Born radii of
atoms i and j, and fGB is a certain smooth function of its arguments. The electrostatic screening
effects of (monovalent) salt are incorporated [71] via the Debye-Huckel screening parameter
κ Å−1 ≈ 0. 316√⎯ ⎯⎯⎯[salt][mol/L].

A common choice [59] of fGB is

3/3/06

Using Sander Generalized Born Page 114

(6.3)fGB = ⎡
⎣
r2

ij + Ri R j exp(−r2
ij /4Ri R j)⎤⎦

1
2

although other other expressions have been tried [96,102]. The effective Born radius of an atom
reflects the degree of its burial inside the molecule: for an isolated ion, Ri is equal to its van der
Waals (VDW) radius ρ i . Then one obtains the particularly simple form:

(6.4)∆Gel ≈ − 1
2 (1 −

1

ε w
)

q2

ρ

where we assumed κ = 0 (pure water). This is the famous expression due to Born for the solvation
energy of a single ion. The function fGB is designed to interpolate, in a clever manner, between
the limit rij → 0 when atomic spheres merge into one, and the opposite extreme rij → ∞ when
the ions can be treated as point charges obeying the Coulomb’s law [98]. For deeply buried
atoms, the effective radii are large, Ri >> ρ i , and for such atoms one can use a rough estimate
Ri ≈ L, where L is the distance from the atom to the molecular surface. Closer to the surface, the
effective radii become smaller, and for a completely solvent exposed side-chain one can expect Ri

to approach ρ i .

The effective radii depend on the molecule’s conformation, and so have to be re-computed
ev ery time the conformation changes. This makes the computational efficiency a critical issue,
and various approximations are normally made that facilitate an effective estimate of ∆Gel . In
particular, the so-called Coulomb field approximation, or CFA, is often used, which replaces the
true electric displacement, Dtrue, around the atom by the Coulomb field D0

i (r) ≡ (qi /r
3)r. Within

this assumption, the following expression for Ri can be derived [98]:

(6.5)R−1
i = ρ−1

i −
1

4π
solute
∫ θ(|r| − ρ i)

1

r4
d3r.

where the integral is over the solute volume surrounding atom i. For a realistic molecule, the
solute boundary (molecular surface) is anything but trivial, and so further approximations are
made to obtain a closed-form analytical expression for the above equation, e.g. the so-called pair-
wise de-screening approach of Hawkins, Cramer and Truhlar [66], which leads to a GB model
termed GBHCT , implement in Amber with igb=1. In the GBHCT , the 3D integral used in the esti-
mation of the effective radii, is performed over the van der Waals (VDW) spheres of solute
atoms, which implies a definition of the solute volume in terms of a set of spheres, rather than the
complex molecular surface [103], commonly used in the PB calculations. For macromolecules,
this approach tends to underestimate the effective radii for buried atoms [98], arguably because
the standard integration procedure treats the small vacuum--filled crevices between the van der
Waals (VDW) spheres of protein atoms as being filled with water, even for structures with large
interior [102]. This error is expected to be greatest for deeply buried atoms characterized by large
effective radii, while for the surface atoms it is largely canceled by the opposing error arising
from the Coulomb approximation, which tends [67,69,94] to overestimate Ri .

The deficiency of the GBHCT model described above can, to some extent, be corrected by
noticing that even the optimal packing of hard spheres, which is a reasonable assumption for
biomolecules, still occupies only about 3/4 of the space, and so "scaling-up" of the integral by a
factor of ≈ 4/3 should effectively increase the underestimated radii by about the right amount,
without any loss of computational efficiency. This idea was developed and applied in the context
of pH titration [98], where it was shown to improve the performance of the GB approximation in
calculating pKa values of protein sidechains. However, the one-parameter correction introduced
in Ref. [98] was not optimal in keeping the GBHCT model’s established performance on small
molecules. It was therefore proposed [54] to re-scale the effective radii with the re-scaling

3/3/06

Using Sander Generalized Born Page 115

parameters being proportional to the degree of the atom’s burial, as quantified by the value I of
the 3D integral. The latter is large for the deeply buried atoms and small for exposed ones. Con-
sequently, one seeks a well-behaved re-scaling function, such that Ri ≈ (ρ̃−1

i − I)−1 for small I , and
Ri > (ρ̃−1

i − I)−1 when I becomes large. The following simple, infinitely differentiable re-scaling
function was chosen to replace the GBHCT original expression for the effective radii:

(6.6)R−1
i = ρ̃−1

i − ρ−1
i tanh ⎛

⎝
α Ψ − β Ψ2 + γ Ψ3⎞

⎠

where Ψ = I ρ̃ i , and α , β , γ are treated as adjustable dimensionless parameters which were opti-
mized using the guidelines mentioned earlier (primarily agreement with the PB). Currently,
Amber supports two GB models (termed GBOBC) based on this idea. These differ by the values
of α , β , γ , and are invoked by setting igb to either igb=2 or igb=5. The details of the optimization
procedure and the performance of the GBOBC model relative to the PB treatment and in MD simu-
lations on proteins is described in Ref. [54]; an independent comparison to the PB in calculating
the electrostatic part of solvation free energy on a large data set of proteins can be found in [104].

6.1.1. GB/SA input parameters
As outlined above, there are several "flavors" of GB available, depending upon the value of

igb. The version that has been most extensively tested corresponds to igb=1; the "OBC" models
(igb=2 and 5) are newer, but appear to give significant improvements and are recommended for
most projects (certainly for peptides or proteins). The newest, most advanced, and least exten-
sively tested model, GBn (igb=7), yields results in considerably better agreement with molecular
surface Poisson-Boltzmann and explicit solvent results than the "OBC" models under many cir-
cumstances. The GBn model was parameterized for peptide and protein systems and is not recom-
mended for use with nucleic acids. Users should understand that all (current) GB models have
limitations and should proceed with caution. Generalized Born simulations can only be run for
non-periodic systems, i.e. where ntb=0. The nonbonded cutoff for GB calculations should be
greater than that for PME calculations, perhaps cut=16. The slowly-varying forces generally do
not have to be evaluated at every step for GB, either nrespa=2 or 4.

IGB

= 0 No generalized Born term is used. (Default)

= 1 The Hawkins, Cramer, Truhlar [65,66] pairwise generalized Born
model (GBHCT) is used, with parameters described by Tsui and Case
[52]. This model uses the default radii set up by LEaP. It is slightly
different from the GB model that was included in Amber6. If you
want to compare to Amber 6, or need to continue an ongoing simula-
tion, you should use the command "set default PBradii amber6" in
LEaP, and set igb=1 in sander. For reference, the Amber6 values are
those used by an earlier Tsui and Case paper [53].

= 2 Use a modified GB model developed by A. Onufriev, D. Bashford
and D.A. Case (GBOBC); the main idea was published earlier [98],
but the actual implementation here [54] is an elaboration of this ini-
tial idea. Within this model, the effective Born radii are re-scaled to
account for the interstitial spaces between atom spheres missed by
the GBHCT approximation. In that sense, GBOBC is intended to be a
closer approximation to true molecular volume, albiet in an average

3/3/06

Using Sander Generalized Born Page 116

sense. With igb=2, the inverse of the effective Born radius is given
by:

(6.7)R−1
i = ρ−1

i − tanh(α Ψ − β Ψ2 + γ Ψ3)/ρ i

where ρ i = ρ i − offset, and Ψ = I ρ i , with I given in our earlier
paper. The parameters α , β , and γ were determined by empirical
fits, and have the values 0.8, 0.0, and 2.909125. This corresponds to
model I in Ref [54]. With this option, you should use the LEaP com-
mand "set default PBradii mbondi2" or "set default PBradii bondi" to
prepare the prmtop file.

= 3 or 4 These values are unused; they were used in Amber 7 for parameter
sets that are no longer supported.

=5 Same as igb=2, except that now α , β , γ are 1.0, 0.8, and 4.85. This
corresponds to model II in Ref [54]. With this option, you should
use the command "set default PBradii mbondi2" in setting up the
prmtop file, although "set default PBradii bondi" is also OK. When
tested in MD simulations of several proteins [54], both of the above
parameterizations of the "OBC" model showed equal performance,
although further tests [104] on an extensive set of protein structures
revealed that the igb=5 variant agrees better with the Poisson-Boltz-
mann treatment in calculating the electrostatic part of the solvation
free energy.

=6 With this option, there is no continuum solvent model used at all; this
corresonds to a non-periodic, "vacuum", model where the non-
bonded interactions are just Lennard-Jones and Coulomb interac-
tions. This option is logically equivalent to setting igb=0 and eed-
meth=4, although the implementation (and computational efficiency)
is not the same.

=7 The GBn model described by Mongan, Simmerling, McCammon,
Case and Onufriev [11] is employed. This model uses a pairwise cor-
rection term to GBHCT to approximate a molecular surface dielectric
boundary; that is to eliminate interstitial regions of high dielectric
smaller than a solvent molecule. This correction affects all atoms and
is geometry-specific, going beyond the geometry-free, "average" re-
scaling approach of GBOBC , which mostly affects buried atoms. With
this method, you should use the bondi radii set. The overlap or
screening parameters in the prmtop file are ignored, and the model-
specific GBn optimized values are substituted. The model carries lit-
tle additional computational overhead relative to the other GB mod-
els described above. [11] This method is not recommended for sys-
tems involving nucleic acids.

=10 Calculate the reaction field for a non-periodic solute in a spherical
"cap" of water, using a numerical Poisson-Boltzmann solver. This
option is described in Section 5.15, below. Note that this is not a
generalized Born simulation, in spite of its use of igb; it is rather an
alternative continuum solvent model.

3/3/06

Using Sander Generalized Born Page 117

INTDIEL Sets the interior dielectric constant of the molecule of interest. Default is 1.0.
Other values have not been extensively tested.

EXTDIEL Sets the exterior or solvent dielectric constant. Default is 78.5.

SALTCON Sets the concentration (M) of 1-1 mobile counterions in solution, using a
modified generalized Born theory based on the Debye-Hückel limiting law for
ion screening of interactions [71]. Default is 0.0 M (i.e. no Debye-Hückel
screening.) Setting saltcon to a non-zero value does result in some increase in
computation time.

RGBMAX This parameter controls the maximum distance between atom pairs that will
be considered in carrying out the pairwise summation involved in calculating
the effective Born radii. Atoms whose associated spheres are farther way than
rgbmax from given atom will not contribute to that atom’s effective Born
radius. This is implemented in a "smooth" fashion (thanks mainly to W.A.
Svrcek-Seiler), so that when part of an atom’s atomic sphere lies inside rgb-
max cutoff, that part contributes to the low-dielectric region that determines
the effective Born radius. The default is 25 Å, which is usually plenty for sin-
gle-domain proteins of a few hundred residues. Even smaller values (of 10-15
Å) are reasonable, changing the functional form of the generalized Born the-
ory a little bit, in exchange for a considerable speed-up in efficiency, and with-
out introducing the usual cut-off artifacts such as drifts in the total energy.
The rgbmax parameter affects only the effective Born radii (and the
derivatives of these values with respect to atomic coordinates). The cut
parameter, on the other hand, determines the maximum distance for the elec-
trostatic, van der Waals and "off-diagonal" terms of the generalized Born
interaction. The value of rgbmax might be either greater or smaller than that
of cut: these two parameters are independent of each other. Howev er, values
of cut that are too small are more likely to lead to artifacts than are small val-
ues of rgbmax; therefore one typically sets rgbmax <= cut.

RBORNSTAT If rbornstat = 1, the statistics of the effective Born radii for each atom of the
molecule throughout the molecular dynamics simulation are reported in the
output file. Default is 0.

OFFSET The dielectric radii for generalized Born calculations are decreased by a uni-
form value "offset" to give the "intrinsic radii" used to obtain effective Born
radii. Default 0.09 Å.

GBSA Option to carry out GB/SA (generalized Born/surface area) simulations. For
the default value of 0, surface area will not be computed and included in the
solvation term. If gbsa = 1, surface area will be computed using the LCPO
model. [72] If gbsa = 2, surface area will be computed by recursively approx-
imating a sphere around an atom, starting from an icosahedra. Note that no
forces are generated in this case, hence, gbsa = 2 only works for a single point
energy calculation and is mainly intended for energy decomposition in the
realm of MM_GBSA.

SURFTEN Surface tension used to calculate the nonpolar contribution to the free energy
of solvation (when gbsa = 1), as Enp = surften*SA. The default is 0.005
kcal/mol-Å2 [105].

RDT This parameter is only used for GB simulations with LES (Locally Enhanced
Sampling). In GB+LES simulations, non-LES atoms require multiple

3/3/06

Using Sander Generalized Born Page 118

effective Born radii due to alternate descreening effects of different LES
copies. When the multiple radii for a non-LES atom differ by less than RDT,
only a single radius will be used for that atom. See the LES portion of the
manual for more details. Default 0.01 Å.

6.1.2. ALPB (Analytical Linearized Poisson-Boltzmann)
Like the GB model, the ALPB approximation [106,107] can be used to replace the need for

explicit solvent, with similar benefits (such as enhanced conformational sampling) and caveats.
The basic ALPB equation that approximates the electrostatic part of the solvation free energy is:

(6.8)∆Gel ≈ ∆Galpb = − 1
2

⎛
⎝

1

ε in
−

1

ε ex

⎞
⎠

1

1 + α β ij
Σ qiq j

⎛
⎝

1

fGB
+

α β
A

⎞
⎠

where β = ε in/ε ex is the ratio of the internal and external dielectrics, α = 0. 571 412, and A is the
so-called effective electrostatic size of the molecule, see the definition of Arad below. Here fGB is
the same smooth function as in the GB model. The GB approximation is then just the special
case of ALPB when the solvent dielectric is infinite; however, for finite values of solvent dielec-
tric the ALPB tends to be more accurate. For aqueous solvation, the accuracy advantage offered
by the ALPB is still noticeable, and becomes more pronounced for less polar solvents. Statisti-
cally significant tests on macromolecular structures [107] have shown that the ALPB is more
likely to be a better approximation to PB than the GB. At the same time, the ALPB has virtually
no additional computational overhead relative to the GB. However, users should realize that at
this point the new model has not yet been tested nearly as extensively as the GB model, and is
therefore in its experimental stage. The model can potentially replace GB in the energy analysis
of snapshots via the MMGB/SA scheme. The electrostatic screening effects of monovalent salt
are currently introduced into the ALPB in the same manner as in the GB, and are determined by
the parameter saltcon .

ALPB Flag for using ALPB to handle electrostatic interactions within the implicit
solvent model.

=0 No ALPB (default)

=1 ALPB is turned on. Requires that one of the GB models is also used
to compute the effective Born radii, that is one must set igb=1,2,5, or
7. The ALPB uses the same sets of radii as required by the particular
GB model.

ARAD Effective electrostatic size (radius) of the molecule. Characterizes its over-all
dimensions and global shape, and is not to be confused with the effective
Born radius of an atom. An appropriate value of Arad must be set if alpb=1:
this can be conveniently estimated for your input structure with the utility
elsize that comes with the main distribution. The default is 15 Å. While Arad
may change during the course of a simulation, these changes are usually not
very large; the accuracy of the ALPB is found to be rather insensitive to these
variations. In the current version of Amber Arad is treated as constant
throughout the simulation, the validity of this assumption is discussed in
[107] Currently, the effective electrostatic size is only defined for "single-con-
nected" molecules. However, the ALPB model can still be used to treat the
important case of complex formation. In the docked state, the compound is

3/3/06

Using Sander Generalized Born Page 119

considered as one, with its electrostatic size well defined. When the ligand
and receptor become infinitely separated, each can be assigned its own value
of Arad.

6.2. Poisson-Boltzmann calculations.
An efficient finite-difference numerical solver [108,109] is implemented in sander for vari-

ous applications of the Poisson-Boltzmann (PB) method. In the following, a brief introduction to
the PB method and the numerical solver is given first. This is followed by a brief discussion of
the supported PB applications and a detailed description of the keywords. Finally example input
files are explained for typical PB applications. For more background information and how to use
the PB method, please consult cited references and the online AMBER PB tuitorial pages.

6.2.1. Introduction.
Solvation interactions, especially solvent-mediated dielectric screening and Debye-Huckel

screening, are thought to be one of the essential determinants of the structure and function of pro-
teins and nucleic acids [110]. Ideally, one would like to provide a detailed description of solvent
through explicit simulation of a large number of solvent molecules. This approach is frequently
used in molecular dynamics simulations of solution systems. In many applications, however, the
solute is the focus of interest, and the detailed properties of the solvent are not of central impor-
tance. In such cases, a simplified representation of the solvent, based on an approximation of the
mean-force potential for the solvation interactions, can be employed to accelerate the computa-
tion. The mean-force potential averages out the degrees of freedom of solvent molecules, so that
they are often called implicit or continuum solvents.

The Poisson-Boltzmann (PB) solvents are a class of widely used implicit solvents
[111,112]. In these models, a solute is represented by an atomic-detail model as in a molecular
mechanics force field, while the solvent molecules and any dissolved electrolyte are treated as a
structureless continuum. The solute intramolecular interactions are computed by the usual molec-
ular mechanics force field terms, while the solute-solvent and solvent-solvent interactions are
computed by a mean-field approximation through the use of the PB electrostatic theory. The elec-
trostatic model represents the solute as a dielectric body whose shape is defined by atomic coordi-
nates and atomic cavity radii [113]. The solute contains a set of point charges at atomic centers
that produce an electrostatic field in the solute region and the solvent region. The electrostatic
fields in such a system, including the solvent reaction field and the Coulombic field, may be com-
puted by solving the PB equation [114,115]. The nonelectrostatic or nonpolar solvation interac-
tions are typically modeled with a term proportional to the solvent accessible surface area. An
alternative method to model the nonpolar solvation interactions is also implemented in this
release (Tan and Luo, In preparation). The new method separates the nonpolar solvation interac-
tions into two terms: the attractive (dispersion) and repulsive (cavity) interactions. Doing so sig-
nificantly improves the correlation between the cavity free energies and solvent accessible surface
areas for branched and cyclic organic molecules [116]. This is in contrast to the commonly used
strategy that correlates total nonpolar solvation energies with solvent accessible surface areas,
which only correlats well for linear aliphatic molecules [105]. In the new method, the attractive
free energy is computed by a numerical integration over the solvent accessible surface area that
accounts for solvation attractive interactions with an infinite cutoff [117]. The PB solvent models
has been demonstrated to be reliable in reproducing the energetics and conformations as

3/3/06

PB Introduction Page 120

compared with explicit solvent simulations and experimental measurements for a wide range of
systems.

The formalism with which a PB solvent can be applied in molecular mechanics simulations
is based on rigorous foundation in statistical mechanics, at least for additive molecular mechanics
force fields. PB solvents approximate the solvent-induced electrostatic mean-force potential by
computing the reversible work done in the process of charging the atomic charges in a solute
molecule as 1/2

j
Σ Q jφ j with j running over all charged atoms. The electrostatic potential φ j at

atomic charge site is computed by solving the PB equation:

∇ε(r)∇φ(r) = − 4π ρ(r) − 4π
i
Σ zi exp(−ziφ(r)/kBT)

where ε(r) is the dielectric constant, φ(r) is the electrostatic potential, ρ(r) is the solute charge, zi

is the charge of ion type i, ci is the number density of ion type i far from the solute, kB is the
Boltzmann constant, and T is temperature; the summation is over all different ion types. In this
release, only the linearized form of the PB equation is used.

Many numerical methods may be used to solve the linearized PB equation. The finite-differ-
ence (FD) method is one of the most popular methods in computational studies of biomolecules
[118-120]. It involves the following steps: mapping atomic charges to the FD grid points (termed
grid charges below); assigning non-periodic/periodic boundary conditions, i.e. electrostatic poten-
tials on the boundary surfaces of the finite difference grid; and applying a dielectric model to
define the boundary between high-dielectric (i.e. water) and low-dielectric (i.e. solute interior)
regions [121].

These steps allow the partial differential equation to be converted into a linear system A x =
b with the electrostatic potential on grid points, x as unknowns, the charge distribution on the grid
points as the source b, and the dielectric constant on the grid edges and salt-related terms wrapped
into the coefficient matrix A, which is a seven-banded symmetric matrix. Once the linear system
is solved, the solution is used to compute the electrostatic energies and forces.

It has been shown that the total electrostatic energy of a solute molecule can be approxi-
mated through the FD approach by subtracting the self FD Coulombic energy (GFD,coul,self) and
the short-range FD Coulombic energy (GFD,coul,short) from the total FD electrostatic energy, and
adding back the analytical short-range Coulombic energy (Gana,coul,short) (see for example [109]).
The self FD Coulombic energy is due to interactions of grid charges within one single atom. The
self energy exists even when the atomic charge is exactly positioned on one grid point. It also
exists in the absence of solvent and any other charges. It apparently is a pure artifact of the FD
approach and must be removed. The short-range FD Coulombic energy is due to interactions
between grid charges in two different atoms that are separated by a short distance, usually less
than 14 grid units. The short-range Coulombic energy is inaccurate because the atomic charges
are mapped onto their eight nearest FD grids, thus causing deviation from the analytical Coulomb
energy. The correction of GFD,coul,self and GFD,coul,short is made possible by the work of Luty and
McCammon’s analytical approach to compute FD Coulombic interactions [122]. Therefore, the
PB electrostatic interactions include both Coulombic interactions and reaction field interactions
for all atoms of the solute. The total electrostatic energy is given in the energy component
EEL(EC) in the output file. The term that is reserved for reaction field energy, EPB, is zero if this
method is used. If you want to know how much of EEL(EC) is reaction field energy, you can run
FDPB twice, once with EPSOUT = 80, and once with EPSOUT = 1.

An alternative method of computing the total electrostatic interactions is also implemented
in this release. In this method, reaction field energy is be computed directly after the induced

3/3/06

PB Introduction Page 121

surface charges are first computed at the dielectric boundary (i.e. the surface that separate solute
and solvent). These surface charges are then used to compute reaction field energy [110], and is
given as the EPB term. It has been shown that doing so improves the convergence of reaction field
energy with respect to the FD grid spacing. However, a drawback of this method is that the
Coulombic energy has to be recomputed analytically with a pairwise summation procedure. The
EEL(EC) term only gives the Coulombic energy with a specified cutoff distance.

If requested, the ECAVITY term returns the solvent-accessible-surface-area dependent non-
polar solvation free energy (either the total nonpolar solvation free energy or the cavity solvation
free energy), the EDISPER term returns the dispersion solvation free energy.

Note that the accuracy of PB is related to the FD grid spacing, the convergence criterion for
the PB solver, and the method used for computing total electrostatic interactions. In Lu and Luo
[109], the accuracy of the first method for total electrostatic interactions is discussed in detail. In
the second method presented above, the total electrostatic interactions strongly depend on the cut-
off distance used in the pairwise summations of charge-charge interactions. The accuracy of non-
polar solvation energy depends on the quality of solvent accessbile surface area which is com-
puted numerically by representing each atomic surface by sphereically distributed dots. Thus a
higher dot density gives more accurate atomic surface area and molecular surface area. However,
it is found by the developers that the default setting for the dot density is quite sufficient for typi-
cal applications (Tan and Luo, In preparation).

PB calculations are memory intensive for macromolecules. Thus, the efficiency of PB
depends on how much memory is allocated for it and the performance of the memory subsystem.
The option directly related its memory allocation is the finite-difference grid spacing. To make PB
run faster, it is possible to change the PB code to single precision as in many widely available
numerical PB solvers. Make sure you have successfully installed sander by running all related
test cases before you do this.

6.2.2. Usage and keywords.
The PB procedure can be turned on by setting igb = 10. The procedure can be used for both

static (single point) and dynamic applications. The default setting of keywords is for static calul-
culations, so please carefully follow the keyword descriptions and examples to change the input
files for dynamic applications.

The current PB implementation can be used both as a pure implicit solvent just as GB (see
section 6.1) and as a limited hybrid explicit-implicit solvent for water CAP simulations (see sec-
tion 5.6.14). The water CAP should be set up in Leap using the solvateCap option (see section
3.6 and example inputs in the next section).

6.2.2.1. Static calculations.
The PB procedure can be invoked by using IMIN = 1 or 5 for static calculations. It is rec-

ommended that the second method (DBFOPT = 1) for total electrostatic interactions be used for
static calculations. As discussed above, the cutoff distance for charge-charge interactions strongly
influences the accuracy of electrostatic interactions. The default setting is infinity, i.e. no cutoff is
used (CUTNB = 0). In this method, the convergence of reaction field energy with respect to the
grid spacing (SPACE) is much better than that of the first method. Our experience shows that
reaction field energy converges within 1% for over 800 tested proteins, protein domains, and
nucleic acids at a grid spacing of 0.5 A° . The reaction field energy computed with this method is

3/3/06

PB Static calculations Page 122

also in excellent agreement with the Delphi program for the tested systems.

For static calculations, NPOPT can be set to nonzero to choose one of the two treatments of
nonpolar solvation interactions (Tan and Luo, In preparation). You can use the solvent-accessible-
surface area (SASA) to correlate total nonpolar solvation free energy. I.e. Gnp = NP_TENSION *
SASA + NP_OFFSET as in PARSE [105]. You can also use SASA to correlate the repulsive
(cavity) term only and use a surface-integration approach to compute the attractive (dispersion)
term. I.e. Gnp = Gdisp + Gcavity, with Gcavity= CAVITY_TENSION * SASA + CAVITY_OFFSET.
When this option is used, RADIOPT has to be set to 1, i.e. the radii set optimized by Tan and Luo
(In preparation) to mimic Gnp in the TIP3P explicit solvent. Otherwise, there is no guarantee of
consistence between the implemented PB solvent and the TIP3P explicit solvent.

6.2.2.2. Dynamic calculations.
The PB procedure can also be invoked by setting IMIN = 0 for dynamics calculations.

Since the nonpolar solvation energy has not been implimented for dynamics, please set NPOPT to
0 to turn it off. It is recommended that the first method (DBFOPT = 0) for total electrostatic
interactions be used for hybrid explicit-implicit solvent for water CAP simulations. This is a spe-
cial case of the procedure described by Lu and Luo [109]. Specifically, the electrostatic energies
and forces are determined with the first method described in Introduction, but the dielectric sur-
face is fixed at the boundary of the CAP waters. That is, in regions of space that are less than
CAP radius from the CAP center (both of these are set with the "solvateCap" command in LEaP),
the dielectric is taken to be EPSIN (typically 1.0); otherwise, the dielectric is EPSOUT (typically
80). This means that all electrostatic interactions are computed, and that the electrostatic cutoffs
(CUTRES and CUTFD, below) are just used to partition the electrostatic interactions into "short-
range" and "long-range" contributions. (This is analogous to the way the CUT variable is used in
PME.) Covalent interactions are computed in the usual way, and the Lennard-Jones interactions
are computed out to a distance CUTNB, with no long-range correction for the missing dispersion
terms.

It should be pointed out that "solvateCap" can be used to solvate either a small portion of a
solute or all of a solute, depending on the center and radius of the water CAP. The two scenarios
require very different implementations for efficiency even if the fundamental algorithm is the
same. The implementation in this release is for the situation where a solute is solvated completely
by the water CAP. If the water CAP option is detected in the prmtop file, i.e. IFCAP > 0, the PB
procedure will ignore whatever atoms outside the water CAP for its dielectric setup.

Because PB treats regions outside the water CAP (augmented by a buffer) as continuum, the
explicit water molecules should stay inside the water CAP throughout a simulation. Thus a strong
restraining harmonic potential should be used, the recommended value for FCAP is 10 kcal/mol-
A°2. Note that the restraining force is only turned on when a water molecule moves outside the
water CAP, so that its interference to the solute dynamics is small. Incidentally, this is also why
the water CAP is augmented by a buffer in the definition of low dielectric region.

Users interested in dynamics simulations with pure implicit solvent are encouraged to test
out the second method (DBFOPT = 1) for total electrostatic interactions with an infinite cutoff
distance (CUTNB = 0). Doing so would be slow for most systems, but this is a safe way to per-
form PB dynamics due to the second method’s very good convergence behavior. The first method
(DBFOPT = 0) for total electrostatic interactions is not implemented for pure implicit solvent
dynamics simulations in this release. Also keep in mind that NPOPT should be set to zero to turn
off nonpolar solvation treatments just as dynamics simulations in hybrid solvent mentioned
above.

3/3/06

PB Dynamic calculations Page 123

All PB options described below can be defined in the &pb namelist, which is read immedi-
ately after the &cntrl namelist. We hav e tried hard to make the defaults for these parameters
appropriate for solvated simulations. Please take care in changing any values. Note that it is not
necessary to use the &pb namelist at all to turn on PB as long as igb = 10. Of course, this means
that you only want to use default options for default applications of PB. The &pb namelist has
the following variables:

EPSIN Sets the dielectric constant of the solute region, default to 1.0. The solute
region is defined to be the solvent excluded volume which in turn is computed
numerically based on a numerical solvent accessible surface area represented
as surface dots.

EPSOUT Sets the implicit solvent dielectric constant, default to 80. The solvent region
is defined to be the space not occupied the solute region. I.e. only two dielec-
tric regions are allowed in the current release.

ISTRNG Sets the ionic strength (in mM) for the Poisson-Boltzmann solvent; default is
0 mM.

PBTEMP Temperature used for the PB equation, needed to compute the Boltzmann fac-
tor for salt effects; default is 300 K.

RADIOPT The option to set up atomic radii.

= 0 Use radii from the prmtop file for both the PB calculation and for the
nonpolar solvation energy calculation (see below on NPOPT).

= 1 Use atom-type/charge-based radii by Tan and Luo (In preparation)
for the PB calculation. Note that the radii are optimized for AMBER
atom types as in standard residues from the AMBER database. If a
residue is build by antechamber, i.e. if GAFF atom types are used,
radii from the prmtop file will be used. Please see AMBER PB tuto-
rials on how these radii are optimized. The procedure in the tutorial
can also be used to optimize radii for non-standard residues. These
optimized radii can be read in if they are incorporated into the prm-
top file. This option also instructs sander to use van der Waals radii
from the prmtop file for nonpolar solvation energy calculations (see
below on NPOPT). Default.

SPROB Solvent probe radius, default to 1.6 A° , the sigma value of TIP3P water. The
radii set up by RADIOPT = 1 are optimized with respect to the reaction field
energies computed by the thermodynamic intergration method for all AMBER
database residues in explicit TIP3P solvents and PME.

NSAS The PB procedure uses a numerical method to compute solvent accessible sur-
face area. NSAS variable gives the approximate number of dots to represent
the maximum atomic solvent accessible surface, default to 400. These dots are
first checked against covalently bonded atoms to see whether any of the dots
are buried. The exposed dots from the first step are then checked against a
nonbonded pair list for van der Waals interactions (see below) to see whether
any of the exposed dots from the first step are buried. The exposed dots of
each atom after the second step then represent the solvent accessible portion
of the atom and are used to compute the SASA of the atom. The molecular
SASA is simply a summation of the atomic SASA’s. A molecular SASA is

3/3/06

PB Dynamic calculations Page 124

used for both PB dielectric map assignment and for nonpolar solvation energy
calculations.

SMOOTHOPT SMOOTHOPT instructs PB how to set up dielectric values for finite-differ-
ence edges that are located on the dielectric boundary.

= 0 The dielectric constant of the boundary edges is always set to the har-
monic average of EPSIN and EPSOUT. Default.

= 1 A weighted harmonic average of EPSIN and EPSOUT is used. The
weights for EPSIN and EPSOUT are fractions of the boundary edges
that are inside or outside the solute [112].

FILLRATIO The ratio between the longest dimension of the rectangular finite-difference
grid and that of the solute. Default to 2.0. It is suggested that a larger FILL-
RATIO, for example 4.0, be used for a small solute. Otherwise, part of the
small solute may lie outside of the finite-difference grid, causing the finite-dif-
ference solver to fail.

SPACE Sets the grid spacing for the finite difference solver; default is 0.5 A° .

NBUFFER Sets how far away (in grid units) the boundary of the finite difference grid is
aw ay from the solute surface; default is 0 grids, i.e. automatically set to be at
least a solvent probe (diameter) away.

ACCEPT Sets the convergence criterion (relative) for the finite difference solver; default
is 0.001.

MAXITN Sets the maximum number of iterations for the finite difference solver, default
to 100. If MAXITN is reached during a simulation (with an accept value of
0.001), it usually indicates there is something wrong in the installation of the
program.

DBFOPT Option to compute total electrostatic energy and forces.

= 0 Compute total electrostatic energy and forces with an infinite cutoff
distance with the particle-particle particle-mesh procedure outlined
in Lu and Luo [109]. In doing so, energy term EPB in the output file
is set to zero, while EEL(EC) includes both reaction field energy and
Coulombic energy.

= 1 Use dielectric boundary surface charges to compute reaction field
energy and forces with an infinite cutoff distance. Default. Energy
term EPB in the output file is reaction field energy. EEL(EC) is
Coulombic energy computed according to the cutoff distance as spe-
ficied by CUTNB below.

SCALEC Option to compute reaction field energy and forces.

= 0 Do not scale dielectric boundary surface charges before computing
reaction field energy and forces. Default.

= 1 Scale dielectric boundary surface charges using Gauss’s Law before
computing reaction field energy and forces.

NPBGRID Sets how often the finite difference grid is regenerated; default is 1 steps. For
molecular dynamics simulations, it is recommended to be set to at least 100. If
IFCAP is nonzero, a value as high as 1000 can be used because the water
CAP dimension does not change during simulation. Note that the PB solver

3/3/06

PB Dynamic calculations Page 125

effectively takes advantage of the fact that the electrostatic potential distribu-
tion varies very slowly during dynamics simulations. This requires that the
finite-difference grid be fixed in space for the code to be efficient. However,
molecules do move freely in simulations. Thus, it is necessary to set up the
finite-difference grid once in a while to make sure a molecule is well within
the grid.

NSNBR Sets how often residue-based pairlist is generated; default is 1 steps. For
molecular dynamics simulations, a value of 25 is recommended.

NSNBA Sets how often atom-based pairlist is generated; default is 1 steps. For molec-
ular dynamics simulations, a value of 5 is recommended.

CUTRES Residue-based cutoff distance; default is 12 A° . The residue-based nonbonded
list is used to make the generation of the atom-based cutoff list efficient.

CUTFD Atom-based cutoff distance to remove short-range finite-difference Coulom-
bic interactions, and to add pairwise Coulombic interactions, default is 5 A° .
See Eqn (20) in Lu and Luo [109].

CUTNB Atom-based cutoff distance for van der Waals interactions, and pairwise
Coulombic interactions when DBFOPT = 1. Default to 0 A° . When CUTNB is
set to the default value of 0, no cutoff will be used for van der Waals and
Coulombic interactions, i.e. all pairwise interactions will be included. When
DBFOPT = 0, this is the cutoff distance used for van der Waals interactions
only. Coulombic interactions are computed without cutoff.

NPOPT Option to select different methods to compute nonpolar solvation free energy.

= 0 No nonpolar solvation free energy is computed.

= 1 The total nonpolar solvation free energy is modeled as a single term
linearly proportional to the solvent accessible surface area, as in the
PARSE parameter set. See Usage and keywords above.

= 2 The total nonpolar solvation free energy is modeled as two terms: the
repulsive (cavity) term and the dispersion term. Default. The disper-
sion term is computed with a surface-based integration method (Tan
and Luo, In preparation) closely related to the PCM solvent for quan-
tum chemical programs [117] Under this framework, the repulsive
term is still computed as a term linearly proportional to the solvent
accessible surface area. With this option, please do not use
RADIOPT = 0, i.e. the radii in the prmtop file. Otherwise, a warning
will be issued in the output file.

CAVITY_SURFTEN
The surface tension for the linear relation between the total nonpolar solvation
free energy (NPOPT = 1) or the cavity free energy (NPOPT = 2) and the sol-
vent accessible surface area. The default value is for NPOPT = 2, but not for
NPOPT = 1.

CAVITY_OFFSET The offset for the linear relation between the total nonpolar solvation free
energy (NPOPT = 1) or the cavity free energy (NPOPT = 2) and the solvent
accessible surface area. The default value is for NPOPT = 2, but not for
NPOPT = 1.

3/3/06

PB Dynamic calculations Page 126

PHIOUT The PB procedure can be used to output spacial distribution of electrostatic
potential (kcal/mol-e) for visualization.

= 0 No potential file is printed out. Default.

= 1 Electrostatic potential will be printed out in a file named pbsa.phi.
Please see AMBER PB tutorials on how to display electrostatic
potential on molecular surface.

PHIFORM
Controls the format of the electrostatic potential file.

= 0 The electrostatic potential is printed in the Delphi binary format.
Default.

= 1 The electrostatic potential is printed in the AMBER ascii format.

NPBVERB
When set to 1, turns on verbose mode for PB calculations; default is 0.

6.2.3. Example inputs.

6.2.3.1. Static calculations.
Here is a sample input file that might be used to perform single structure calculations.

Sample single point PB calculation

&cntrl

ntx=1, irest=0,

imin=1, ntmin=2, maxcyc=0,

ntpr=1, igb=10, ntb=0,

ntc=1, ntf=1

/

&pb

npbverb=1, istrng=0, epsout=80.0, epsin=1.0,

sprob=1.6, radiopt=1,

space=0.5, nbuffer=0, accept=0.001,

cutnb=0, dbfopt=1, npopt=2

/

Note that NPBVERB = 1 above. This generates many detailed information in the output file
for the PB and NP calculations. A useful printout is atomic SASA data for both PB and NP calcu-
lations which may or may not use the same atomic radius definition. Since the FD solver for PB is
called twice to perform electrostatic focus calculations, two PB printouts are shown for each sin-
gle point calculation. NPOPT is set to default value of 2, which calls for nonpolar solvation calcu-
lation with the new method that separates cavity and dispersion interactions. The EDISPER term
gives the dispersion solvation free energy, and the ECAVITY term gives the cavity solvation free
energy. If NPOPT is set to 1, the ECAVITY term would give the total nonpolar solvation free
energy. If IMIN is set to be 5, the above input file can also be used to post-process a sander trajec-
tory. See section 5.6.1 and related AMBER test cases for details of the IMIN = 5 option. Also
keep in mind that such calculations are usually for structures without explicit water molecules.
You can use ptraj to generate water-free inpcrd and trajectory files for these calculations.

3/3/06

PB Example inputs Page 127

You can also use sander to produce an electrostatic potential map for visualization in pymol
when setting PHIOUT = 1. By default, sander outputs a file pbsa.phi in the Delphi bindary for-
mat. The sample input file is listed below:

Sample PB visualization input

&cntrl

ntx=1, irest=0,

imin=1, ntmin=2, maxcyc=0,

ntpr=1, igb=10, ntb=0,

ntc=1, ntf=1

/

&pb

npbverb=1, istrng=0, epsout=80.0, epsin=1.0,

space=1., accept=0.001,

sprob=1.4, cutnb=9,

phiout=1, phiform=0

/

To be consistent with the surface routine of pymol, the option PHIOUT = 1 instructs sander
to use the radii as defined in pymol. The finite-difference grid is also set to be cubic as in Delphi.
The SPROB value should be set to that used in pymol, 1.4 A° . A large grid spacing, e.g. 1 A° or
higher, is recommended for visualization purposes. Otherwise, the potential file would be very
large. In principle, it is possible to visualize the potential file in VMD, but we have not validated
this program. More detailed information on static single-point PB calculations can be found on
the AMBER PB tutorial pages.

6.2.3.2. Dynamic calculations.
Since the PB procedure is called for static calculations by default, several default options

must be changed if you want to test the procedure for dynamics simulations. For hybrid explicit-
implicit solvent dynamics simulations, the following sample input file can be used:

Sample water CAP simulation with PB reaction field correction

&cntrl

ntx=1, irest=0, imin=0,

ntpr=500, ntwx=500, ntwr=5000,

nstlim=1000, dt=0.001,

ntt=1, temp0=300, tempi=0, tautp=0.1,

igb=10, ntb=0, cut=0, fcap=10.0, ivcap=0,

ntc=2, ntf=2, tol=0.000001

/

&pb

npbverb=0, npbgrid=1000, nsnbr=25, nsnba=5,

epsin=1.0, epsout=80.0,

space=0.7, accept=0.001,

smoothopt=1, dbfopt=0,

npopt=0,

cutres=11, cutnb=9, cutfd=9

/

3/3/06

PB Dynamic calculations Page 128

Here NPOPT should be set to zero to turn off nonpolar solvation because the nonpolar
implementations are not ready for dynamics simulations and also because the nonpolar interac-
tions are supposed to be taken care of by explicit solvent molecules in the systems. The second
point is that DBFOPT should be set to zero to use the procedure in Lu and Luo [109]. A related
keyword is SMOOTHOPT that has to be set to 1 to turn on the weighted harmonic averaging of
dielectric constants for boundary dielectric edges when using DBFOPT = 0 for dynamics. Finally
the cutoff distances and their update frequencies should be set as in the input file.

The PB procedure implemented in sander can be invoked for pure implicit solvent dynamics
simulations as well. Here is a sample input:

Sample PB implicit solvent dynamics

&cntrl

ntx=1, irest=0, imin=0,

ntpr=500, ntwx=500, nscm=100, ntwr=5000,

dt=0.001, nstlim=1000,

temp0=300, tempi=0, ntt=1, tautp=0.1,

igb=10, cut=0, ntb=0,

ntc=2, ntf=2, tol=0.000001

/

&pb

npbverb=0, nsnbr=25, nsnba=5, npbgrid=100,

npopt=0, istrng=0, epsout=80.0, epsin=1.0,

space=1., fillratio=2,

sprob=1.6, radiopt=1,

accept=0.001

/

Note here NPOPT is also set to turn off nonpolar solvation interactions. DBFOPT is the
default value of 1, i.e. induced surface charges are first computed for reaction field energy and
forces. For dynamics simulation of small molecules, it might be necessary to set FILLRATIO to
4. Since CUTNB is set to the default value of zero, an inifite cutoff distance is used for both
Coulombic and van der Waals interactions. Note that the surface routine also needs the non-
bonded list, though with a much shorter cutoff distance (9 A°), so the nonbonded list needs regular
updates as specified in the input file.

6.3. Empirical Valence Bond

6.3.1. Introduction.
Chemical reactivity can be formulated within the empirical valence bond (EVB) model,

whereby the reactive surface is defined traditionally as the lowest adiabatic surface obtained by
diagonalization of the Hamiltonian matrix in the representation of non-reactive diabatic states.
These diabatic states can be described by a force field approach, such as Amber. The coupling
elements in the Hamiltonian matrix embody all the physics needed for describing transitions
between the diabatic states.

For example, the intramolecular proton transfer reaction involved in the intercoversion
between hydroxypyridine and pyridone (Figure 1) is described by a 2-state EVB Hamiltonian

3/3/06

Using Sander Empirical valence bond Page 129

matrix

(6.10)H =
⎡
⎢
⎣

H11

H21

H12

H22

⎤
⎥
⎦

where valence bond state 1 represents the reactant state (RS) with the proton bonded to the oxy-
gen and valence bond state 2 represents the product state (PS) with the proton bonded to the nitro-
gen. The matrix elements H11 and H22 are simply the energies of the reactant and product sys-
tems, respectively, as calculated from Amber. The off-diagonal elements of the symmetric
Hamiltonian matrix, i.e. H12 = H21, couple these two well states.

Now, how do we go about determining the coupling element H12 for describing the proton
tranfer reaction (involving bond breakage and bond formation)? The standard prescription is to fit
the coupling elements such that the results from EVB molecular dynamics reproduce experimen-
tal observables or results from high-level electronic structure methods. Amber offers several
functional forms for describing the couplings. Additionally, the EVB facility can handle an arbi-
trary N-state system as well as perform MD or energy minimization on the EVB ground-state sur-
face and biased sampling along an energy gap reaction coordinate.

6.3.2. General usage description.
The EVB facility is built on top of the multisander infrastructure in Amber. As such, the

user will need to build the parallel version of sander in order to utilize the EVB feature. Informa-
tion for each EVB diabatic state are obtained from separate (simultaneous) instances of sander.
The energies and forces of all the states are communicated via MPI to the master node, which is
responsible for computing the EVB energy and forces and broadcasting these to the other nodes
for the next MD cycle.

The required input files are (1) an EVB multisander groupfile that contains (per line) all the
commandline options for each sander job, (2) the mdin, coordinate, and parmtop files that are
specified in the groupfile, and (3) the EVB input files. The contents of the EVB groupfile is

Figure 1. Hydroxypyridine to pyridone conversion via intramolecular proton transfer.

3/3/06

EVB General usage description Page 130

similar to that for a typical multisander execution, with the exception of an additional command-
line flag -evbin for specifying the name of the EVB input file. Below is an example groupfile:

2-state EVB example; start the system in the po configuration space

-O -i mdin -p poh.top -c poh.crd -o poh.out -r poh.rst -evbin input.poh

-O -i mdin -p po.top -c poh.crd -o po.out -r po.rst -evbin input.po

Each line corresponds to a diabatic state; comments are preceeded by a # symbol in the first col-
umn of a line. Now, it is critical to notice in the above example that the starting configurations for
both sander jobs are the same, although the topology files are different. This is absolutely neces-
sary, and the code does check to ensure that the file names for the initial configurations are identi-
cal. This constraint is to guarantee that the system starts in a physically meaningful part of con-
figuration space. All other alternatives are nonsense in our part of the physical universe. The
only additional flag in the &cntrl namelist of the mdin file is ievb, which has the following
values

IEVB Flag to run EVB

= 0 No effect (default)

= 1 Enable EVB. The value of IMIN specifies if the sander calculation
is a molecular dynamics (imin=0) or an energy minimization
(imin=1). The variable EVB_DYN in the &evb namelist of the
EVB input file refines this choice to specify if the calculation type is
on the EVB ground-state surface, on a mapping potential, or on an
umbrella potential (see below for details).

The argument of the commandline flag -evbin provides the name of the EVB inputfile.
Corresponding to the above groupfile example, the inputs for EVB state 1 are provided in the file
input.poh and those for EVB state 2 are provided in input.po. For the case of constant coupling
between the EVB states, the input.poh file may look something like the following

Hydroxypyridine: proton = atom no. 2 and Oxygen = atom no. 12

&evb nevb=2, nmorse=1,

dia_type = ’force_field’,

xch_type = ’constant’,

evb_dyn = ’groundstate’,

dia_shift(1)% st = 1, dia_shift(1)% nrg_offset = -42.0,

dia_shift(2)% st = 2, dia_shift(2)% nrg_offset = 0.0,

xch_cnst(1)% ist = 1, xch_cnst(1)% jst = 2, xch_cnst(1)% xcnst = 20.0,

morsify(1)% iatom=2, morsify(1)% jatom=12, morsify(1)% D=25.0,

morsify(1)% a=1.5, morsify(1)% r0=1.0,

&end

and the file input.po may appear as follows:

Pyridone: proton = atom no. 2 and Nitrogen = atom no. 1

&evb nevb=2, nmorse=1,

3/3/06

EVB General usage description Page 131

dia_type = ’force_field’,

xch_type = ’constant’,

evb_dyn = ’groundstate’,

dia_shift(1)% st = 1, dia_shift(1)% nrg_offset = -42.0,

dia_shift(2)% st = 2, dia_shift(2)% nrg_offset = 0.0,

xch_cnst(1)% ist = 1, xch_cnst(1)% jst = 2, xch_cnst(1)% xcnst = 20.0,

morsify(1)% iatom=1, morsify(1)% jatom=2, morsify(1)% D=20.0,

morsify(1)% a=3.2, morsify(1)% r0=1.2,

&end

Note that the only difference between the two input files is contained within the derived datatype
variable morsify(:), which requests the replacement of specified Amber harmonic bond inter-
actions with Morse type interactions. The above EVB input files specify that the system is
described by a 2-state model where the diabatic states are computed from a force field approach,
the coupling between the 2-states is a constant, and the dynamics is on the EVB ground-state sur-
face. The energies of the diabatic states were also adjusted by 42.0 kcal/mol so that the relative
energies agree with ab initio calculation. The constant value coupling between the 2-states was
parameterized to give an EVB energy barrier that agrees with the ab initio barrier of

This parameterization of the EVB surface to provide observables that match either results
from high-level quantum chemistry calculations or experimental measurements is the most
tedious, boring, and time-consuming aspect of the EVB model. However, after the EVB surface
has been calibrated, the user has access to reactive chemical dynamics simulation timescales and
lengthscales which would be otherwise unachievable using standard ab initio MD approaches, for
example.

Now, let us suppose that the constant coupling prescription does not provide the detailed
features needed to described the transition state region in going from diabatic state 1 to diabatic
state 2. Furthermore, we find that the couplings, as a function of nuclear coordinates, can be
described quite well (from comparison to ab initio data) using a Gaussian functional form. How
should we modify the above EVB input files to obtain a more accurate reactive surface?

We would need to change the xch_type variable from a ’constant’ to ’gauss’ as
well as replace the variable xch_cnst by the variable xch_gauss(:), which contains the
parameters for the Gaussian functional form. Of course, these parameters need to be optimized to
provide the more accurate surface; otherwise, the surface may turn out to be worse than that pro-
vided by the constant coupling approximation. The two modified EVB files may look something
like the following:

Hydroxypyridine: proton = atom no. 2 and Oxygen = atom no. 12

&evb nevb=2, nmorse=1,

dia_type = ’force_field’,

xch_type = ’gauss’,

evb_dyn = ’groundstate’,

dia_shift(1)% st = 1, dia_shift(1)% nrg_offset = -42.0,

dia_shift(2)% st = 2, dia_shift(2)% nrg_offset = 0.0,

xch_gauss(1)% ist=1, xch_gauss(1)% jst=2,

xch_gauss(1)% iatom=12, xch_gauss(1)% iatom=1,

xch_gauss(1)% a=20.0, xch_gauss(1)% sigma=1.0, xch_gauss(1)% r0=2.11,

morsify(1)% iatom=2, morsify(1)% jatom=12, morsify(1)% D=25.0,

3/3/06

EVB General usage description Page 132

morsify(1)% a=1.5, morsify(1)% r0=1.0,

&end

Pyridone: proton = atom no. 2 and Nitrogen = atom no. 1

&evb nevb=2, nmorse=1,

dia_type = ’force_field’,

xch_type = ’gauss’,

evb_dyn = ’groundstate’,

dia_shift(1)% st = 1, dia_shift(1)% nrg_offset = -42.0,

dia_shift(2)% st = 2, dia_shift(2)% nrg_offset = 0.0,

xch_gauss(1)% ist=1, xch_gauss(1)% jst=2,

xch_gauss(1)% iatom=12, xch_gauss(1)% iatom=1,

xch_gauss(1)% a=20.0, xch_gauss(1)% sigma=1.0, xch_gauss(1)% r0=2.11,

morsify(1)% iatom=1, morsify(1)% jatom=2, morsify(1)% D=20.0,

morsify(1)% a=3.2, morsify(1)% r0=1.2,

&end

6.3.3. EVB input variables and interdependencies.
The variables in the &evb namelist of the EVB input file are described below. The style of

the input file is the same as that for the standard mdin used in a sander run. Assignment to char-
acter type variables need to be assigned values encapsulated within quotation marks (for example,
evb_dyn=’groundstate’). Array variables are denote below by a colon enclosed within
parenthesis (for example, DIA_SHIFT(:)). Conforming to the Fortran 90 standard, derived
datatype variables can be assigned element-wise, i.e., dia_shift(1)%st=1,
dia_shift(1)%nrg_offset=0.0, dia_shift(2)%st=2,
dia_shift(2)%nrg_offset=42.0.

NEVB [integer] Number of EVB states. For example, NEVB = 3 specifies that the
system is described by a 3 × 3 Hamiltonian matrix in the representation of 3
diabatic states. The EVB groupfile will contain 3 lines of sander command-
line options specifying the mdin, coordinate, parmtop, and EVB input files.

NMORSE [integer] Number of Amber harmonic bond interactions that will be changed
to a Morse type interaction. User will need to provide parameters for the vari-
able MORSIFY(:).

NBIAS [integer] Number of biasing potentials to include in the system Hamiltonian.
The supported biased sampling approaches include (1) mapping potential and
(2) energy gap umbrella potential. See EVB_DYN and associated dependen-
cies.

DIA_TYPE [character] Diabatic state type

= ’force_field’ Diabatic states energies are computed using Amber.

3/3/06

EVB Input variables Page 133

= ’ab_initio’ Diabatic states energies are computed based on energy, gra-
dient, and hessian information from an external ab initio
calculation. User will need to provide parameters for the
variable DIA_XFILE(:).

XCH_TYPE [character] Coupling element type

= ’constant’ Hij is a constant

= ’exp’ Hij is described by an exponential function of the form

Aij exp
⎡
⎢
⎣
−uij

⎛
⎝
rkl − r(0,ij)

kl
⎞
⎠
⎤
⎥
⎦
. The user will need to provide

parameters for this function in the variable XCH_EXP(:).

= ’gauss’ Hij is described by a gaussian function of the form

Aij exp
⎡
⎢
⎣
−

1

σ 2
ij

⎛
⎝
rkl − r(0,ij)

kl
⎞
⎠

2⎤
⎥
⎦
. The user will need to provide

parameters for this function in the variabe XCH_GAUSS(:).

= ’chang_miller’
Hij is described by the Chang-Miller framework

EVB_DYN [character] EVB dynamics type

= ’groundstate’ Dynamics on EVB ground-state potential surface

= ’evb_map’ Biased sampling based on Ariel Warshel’s mapping poten-
tial approach. User will need to provide parameters for the
variable EMAP(:).

= ’eg ap_umb’ Harmonic umbrella sampling on an energy gap reaction
coordinate. User will need to provide parameters for the
variable EGAP_UMB(:).

DIA_SHIFT(:) [derived type] Diabatic state energy shift. The size of this derived datatype
array is NEVB. The components of the derived type are

%st [integer] Diabatic state index

%nrg_offset [real] Energy offset for EVB state st

XCH_CNST(:) [derived type] Constant coupling. The size of this derived datatype array is
NXCH, which is calculated internally by NEVB (NEVB - 1) / 2. The com-
ponents of the derived type are

%ist [integer] Diabatic state index inv olved in the coupling

%jst [integer] Diabatic state index inv olved in the coupling

%xcnst [real] Constant exchange parameter

DIA_XFILE(:) [derived type] External file containing the energy, gradient, and hessian for a
particular diabatic state. The size of this derived datatype array is NEVB.
The components of this derived type are

%st [integer] Diabatic state index

%fname [character] External file name

XCH_XFILE(:) [derived type] External file containing the energy, gradient, and hessian used
for computing an exchange term. The size of this derived datatype array is

3/3/06

EVB Input variables Page 134

NXCH, which is calculated internally by NEVB (NEVB - 1) / 2. The com-
ponents of this derived type are

%ist [integer] Diabatic state index inv olved in the coupling

%jst [integer] Diabatic state index inv olved in the coupling

%fname [character] External file name

XCH_EXP(:) [derived type] Parameters for the exponential functional form of the coupling
terms. The size of this derived datatype array is NXCH, which is calculated
internally by NEVB (NEVB - 1) / 2. The components of this derived type
are

%ist [integer] Diabatic state index inv olved in the coupling

%jst [integer] Diabatic state index inv olved in the coupling

%iatom [integer] Index of atom involved in the bond

%jatom [integer] Index of atom involved in the bond

%a [real] Prefactor parameter outside of exponential

%u [real] Prefactor parameter inside of exponential

%r0 [real] Equilibrium distance parameter

XCH_GAUSS(:) [derived type] Parameters for the Gaussian functional form of the coupling
terms. The size of this derived datatype array is NXCH, which is calculated
internally by NEVB (NEVB - 1) / 2. The components of this derived type
are

%ist [integer] Diabatic state index inv olved in the coupling

%jst [integer] Diabatic state index inv olved in the coupling

%iatom [integer] Index of atom involved in the bond

%jatom [integer] Index of atom involved in the bond

%a [real] Prefactor parameter outside of exponential

%sigma [real] Related to the variance

%r0 [real] Equilibrium distance parameter

MORSIFY(:) [derived type] Morse potential parameters used form converting the
NMORSE Amber harmonic bond interactions to the Morse type. The size of
this derived datatype array is NMORSE. The components in the derived type
are

%iatom [integer] Index of atom involved in the bond

%jatom [integer] Index of atom involved in the bond

%d [real] Well depth in Morse potential

%a [real] Prefactor inside exponential

%r0 [real] Equilibrium distance parameter

EMAP(:) [derived type] Mapping potential parameters required for the function
Vλ = (1 − λ)Hii + λ H ff . The size of this derived datatype array is NBIAS.
The components of the derived type are

3/3/06

EVB Input variables Page 135

%ist [integer] Diabatic state index for the initial state

%jst [integer] Diabatic state index for the final state

%lambda [real] Mapping potential parameter

EGAP_UMB(:) [derived type] Harmonic umbrella potential parameters required for the func-
tion Vumb = 1

2 k[(Hii − H ff) − RC0]2. The size of this derived datatype array is
NBIAS. The components of the derived type are

%ist [integer] Diabatic state index for the initial state

%jst [integer] Diabatic state index for the final state

%k [real] Harmonic force constant

%ezero [real] Equilibrium RC position in harmonic potential

6.3.4. Biased sampling.
When a reactive event is described by an intrinsic high free energy barrier, standard molecu-

lar dynamics on the EVB ground-state surface will not adequately sample the important transition
state region. Under these conditions, chemical reactions are rare events and sampling on the EVB
surface effectively reduces to sampling on a diabatic surface. One framework for enhancing the
sampling of rare events is through the modification of the system Hamiltonian with the addition
of biasing potentials. The EVB facility in Amber offers two options for biased sampling: (1)
Arieh Warshel’s mapping potential approach (2) Dave Case’s harmonic umbrella potential
approach. Currently, only the energy gap reaction coordinate (RC) is supported; support for other
types of RC will be included in future releases.

In the mapping potential framework, the system Hamiltonian (and hence, the molecular
dynamics) is described by the modified potential

(6.11)Vλ = (1 − λ)Hii + λ H ff

where Hii is the EVB matrix element for the initial state and H ff is the EVB matrix element for
the final state. As the value of mapping potential parameter λ changes from 0 to 1, the system
evolves from the initial state to the final state. As an example, for λ = 0. 50, the system Hamilto-
nian is an equal linear combination of the initial and final states and molecular dynamics sample
the region in the vicinity of the transition state. Each mapping potential only samples a portion of
the reaction coordinate. In practice, a series of mapping potentials are used to biase the sampling
across the whole range of the RC. The average distribution of the RC for each mapping potential
are then unbiased and the set of unbiased distributions are combined to give the whole free energy
profile or potential of mean force (PMF). Figure 2 shows a PMF for the hydroxypyridine to pyri-
done intramolecular proton transfer reaction obtained from 19 mapping potential simulations with
λ ranging from 0.05 to 0.95 at 0.05 interval.

In the harmonic umbrella sampling framework, the system Hamiltonian is described by the
modified potential

V (n)
biased(q) = Vel0(q) + V (n)

umb(q)

3/3/06

EVB Biased sampling Page 136

Figure 2. Potential of mean force for the hydroxypyridine to pyridone conversion via intramolecular proton
transfer as obtained from a series of mapping potential simulations.

(6.12)= Vel0(q) + 1
2 k(n)⎡

⎣
RC(q) − RC(n)

0
⎤
⎦

2

where q is the set of system coordinates, k is the harmonic force constant parameter, and Vumb is
an umbrella potential that is added to the original system potential Vel0 (obtained from diagonal-
ization of the EVB matrix) to biase the sampling towards a particular value of the reaction coordi-
nate RC0. The superscript (n) denotes that a series of biased sampling simulations, each enhanc-
ing the sampling of a particular window of the RC, is required to map out the entire PMF. In the
current implementation, the reaction coordinate is chosen to be the difference between the ener-
gies of the initial and final diabatic states

(6.13)RC(q) = Hii(q) − H ff (q)

The results from each biased sampling are then unbiased and combined to generate the PMF for
the chemical reaction to occur on the original (physically relevant) EVB ground-state potential
energy surface, Vel0. Figure 3 depicts the PMF for the hydroxypyridine to pyridone conversion
that is obtained from 21 umbrella sampling simulations. The probability for sampling the whole
range of the RC on Vel0 was obtained from the biased sampling trajectories using the weighted
histogram analysis method. The supporting program to generate the PMF from a set of mapping
potential simulations or from a set of umbrella sampling MD can be obtained from the Amber
website, http://amber.scripps.edu/.

3/3/06

EVB Biased sampling usage Page 137

Figure 3. Potential of mean force for the hydroxypyridine to pyridone conversion via intramolecular proton
transfer as obtained from a series of umbrella sampling simulations.

6.3.5. Biased sampling usage.
The biased sampling function is accessed through the evb_dyn and nbias variables in

the EVB input file. We hav e already discussed in the previous section the ground-state dynamics
option, i.e., evb_dyn=’groundstate’. Mapping potential dynamics is invoked using the
assignment evb_dyn=’evb_map’; while, biased sampling via umbrella potentials is invoked
with the assignment evb_dyn=’egap_umb’. The variable nbias specifies the number of
biasing potentials to include in the system Hamiltonian. Associated with each choice of biased
sampling approach is an additional dependent derived-type variable

EMAP(:) [derived type] Mapping potential parameters required for the function
Vλ = (1 − λ)Hii + λ H ff . The size of this derived datatype array is NBIAS.
The components of the derived type are

%ist [integer] Diabatic state index for the initial state

%jst [integer] Diabatic state index for the final state

%lambda [real] Mapping potential parameter

EGAP_UMB(:) [derived type] Harmonic umbrella potential parameters required for the func-
tion Vumb = 1

2 k[(Hii − H ff) − RC0]2. The size of this derived datatype array is
NBIAS. The components of the derived type are

%ist [integer] Diabatic state index for the initial state

%jst [integer] Diabatic state index for the final state

%k [real] Harmonic force constant

3/3/06

EVB Biased sampling usage Page 138

%ezero [real] Equilibrium RC position in harmonic potential

Shown below is an example mapping potential EVB inputfile for the hydroxypyridine dia-
batic state; one will also have a corresponding file for the pyridone diabatic state. Now, these
pairs of inputfiles will comprise a single mapping potential simulation, where diabatic state 1 has
been assigned arbitrarily as the initial state and diabatic state 2 has been assigned as the final state
and the coupling parameter between these two states is λ = 0. 50. Molecular dynamics on this
effective potential will sample the transition state region of the reaction coordinate. To sample
the other parts of the RC, one will need to perform mapping potential trajectories for other values
of λ in the interval between 0.0 and 1.0. The PMF shown in Figure 2 was obtain from a set of 19
mapping potential trajectories, with λ = {0. 05, 0.10 , . . . , 0. 90, 0. 95}. The hydroxypyridine dia-
batic state inputfiles are identical for all 19 simulations, except for the assignment of the λ value.

Hydroxypyridine: proton = atom no. 2 and Oxygen = atom no. 12

&evb nevb=2, nmorse=1, nbias=1, ntw_evb=50

dia_type = ’force_field’,

xch_type = ’constant’,

evb_dyn = ’evb_map’,

dia_shift(1)% st = 1, dia_shift(1)% nrg_offset = -42.0,

dia_shift(2)% st = 2, dia_shift(2)% nrg_offset = 0.0,

xch_cnst(1)% ist = 1, xch_cnst(1)% jst = 2, xch_cnst(1)% xcnst = 20.0,

morsify(1)% iatom=2, morsify(1)% jatom=12, morsify(1)% D=25.0,

morsify(1)% a=1.5, morsify(1)% r0=1.0,

emap(1)% ist = 1, emap(1)% jst = 2, emap(1)% lambda = .50,

&end

Shown below is an example umbrella sampling EVB inputfile for the hydroxypyridine diabatic
state; the pyridone diabatic state will have a corresponding file. Here, the EVB ground-state
potential Vel0 is augmented with a single (nbias=1) harmonic umbrella potential with force con-
stant of k=0.010 and a RC equilibrium position of ezero=-75.00. The PMF shown in Fig-
ure 3 was generated from a set of 21 umbrella sampling trajectories where the RC equilibrium
position was varied from -250.00 kcal/mol to 250.00 kcal/mol at 25.0 kcal/mol increments. The
number of umbrella sampling windows as well as the choice of values for the force constant
parameter and RC equilibrium position will ultimately depend on the nature of the free energy
landscape of the system in question.

Hydroxypyridine: proton = atom no. 2 and Oxygen = atom no. 12

&evb nevb=2, nmorse=1, nbias=1, ntw_evb=50

dia_type = ’force_field’,

xch_type = ’constant’,

evb_dyn = ’egap_umb’,

dia_shift(1)% st = 1, dia_shift(1)% nrg_offset = -42.0,

dia_shift(2)% st = 2, dia_shift(2)% nrg_offset = 0.0,

xch_cnst(1)% ist = 1, xch_cnst(1)% jst = 2, xch_cnst(1)% xcnst = 20.0,

morsify(1)% iatom=2, morsify(1)% jatom=12, morsify(1)% D=25.0,

morsify(1)% a=1.5, morsify(1)% r0=1.0,

egap_umb(1)% ist = 1, egap_umb(1)% jst = 2, egap_umb(1)% k = 0.010,

3/3/06

EVB Biased sampling usage Page 139

egap_umb(1)% ezero = -75.00,

&end

6.4. QM/MM calculations
Sander now supports the option of allowing part of the system to be described quantum

mechanically [73] in an approach known as a hybid (or coupled potential) QM/MM simulation.
The QM/MM support has been completely re-written in Amber 9 and the way in which QM/MM
calculations are initiated has been greatly simplified. As such Amber 8 QM/MM input files are no
longer compatible with Amber 9. You should read this section of the manual carefully to famil-
iarise yourself with how to run QM/MM simulations in Amber 9. The most important change is
that QM/MM support is now provided in the regular sander executable and so the only change
required to your execution protocol used for a simulation is some minor modification of the input
file (mdin). Other important changes include the way in which calculations are set up, the way
the non-bond cut off works for QM atoms, the way link atoms are treated and the way in which
the SHAKE algorithm deals with QM atoms.

QM/MM calculations are implemented via two interfaces. The first interface provides seem-
less semi-empirical QM/MM integration via a &qmmm namelist supplied in the regular mdin file.
This interface is accessed by setting ifqnt=1 and idc=0. The second interface provides support
for QM/MM simulations via the DivCon library. This interface is accessed by setting idc>0, and
specifying additional parameters in a divcon.in file. Chapter 7 discusses DivCon, and the rest of
this section assumes that idc=0.

Support currently exists for gas phase, generalized Born and PME periodic simulations.
Av ailable semi- empirical Hamiltonians are PM3 [76], AM1 [75], MNDO [74], PDDG/PM3 [77],
PDDG/MNDO [77], and PM3CARB1 [78]. Support is also available, on a functionally limited
basis at present (see below) for the Density Functional Theory-based-tight- binding (DFTB)
Hamiltonian [123,124] as well as the Self-Consistent-Charge version, SCC-DFTB [125].
DFTB/SCC-DFTB also supports approximate inclusion of dispersion effects [126].

The elements supported by each QM method are:

MNDO: H, Li, Be, B, C, N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, Sn, I, Hg, Pb

AM1: H, C, N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, I, Hg

PM3: H, Be, C, N, O, F, Mg, Al, Si, P, S, Cl, Zn, Ga, Ge, As, Se, Br, Cd,

In, Sn, Sb, Te, I, Hg, Tl, Pb, Bi

PDDG/PM3: H, C, N, O, F, Si, P, S, Cl, Br, I

PDDG/MNDO: H, C, N, O, F, Cl, Br, I

PM3CARB1: H, C, O

DFTB/SCC-DFTB: H, C, N, O, S, Zn

3/3/06

Using Sander QM/MM calculations Page 140

The DFTB/SCC-DFTB implementation does not currently support generalized Born, PME
or Ewald calculations, and the performance has not been as aggressively optimised as the other
semi-empirical methods. The DFTB/SCC- DFTB code is an adaptation of the DFT/DYLAX code
by Marcus Elstner et al.. In order to use DFTB (qmtheory=7) a set of integral parameter files are
required. These are not distributed with Amber, and must be obtained directly from Marcus Elst-
ner, by completing the license agreement DFTB_license.pdf found in the $AMBEROME/doc
directory, and sending it to Marcus Elstner as indicated in the file.

6.4.1. Changes from earlier versions of Amber
A primary aim in making recent changes has been to improve the accuracy of the code as

well as the simplicity with which QM/MM calculations can be setup and run. Energy conserva-
tion with even small systems proves a problem with a number of commonly used QM/MM MD
packages, since energies and forces may not be completely consistent with each other. QM/MM
simulations with default parameers in Amber 9 should generally conserve energy about as well as
one would find for a corresponding pure MM simulation.

A second aim has been to make the code as efficient as possible, so that the hybrid potential
can be used for simulations on biological macromolecules in condensed phase on the nanosecond
time scale. A further goal has been to make selection of a QM region orthogonal to other choices,
by implementing the same generalized Born and periodic PME options that one already has for
MM potentials. We hav e attempted to make the QM/MM interface as compatible with the regular
Sander options as possible so that a user does not need to worry about incompatibilities between
classical only simulations and QM/MM simulations. A QM/MM MD simulation is enabled sim-
ply by adding the keyword ifqnt=1 to the regular i&cntrl namelist and then adding a second
namelist called &qmmm with QM-specific settings such as which atoms to apply the QM potential
to and what Hamiltonian to use.

6.4.2. The hybrid QM/MM potential
When running a QM/MM simulation in Sander the system is partitioned into two regions, a

QM region consisting of the atoms defined by either the qmmask or iqmatoms keyword, and a
MM region consisting of all the atoms that are not part of the QM region. For a typical protein
simulation in explicit solvent the number of MM atoms will be much greater than the number of
QM atoms. Either region can contain zero atoms, giving either a pure QM simulation or a stan-
dard classical simulation. For periodic simulations, the quantum region must be compact, so that
the extent (or diameter) of the QM region (in any direction) plus twice the QM/MM cutoff must
be less that the box size. Hence, you can define an "active site" to be the QM region, but in most
cases could not ask that all cysteine residues (for example) be quantum objects. The restrictions
are looser for non-periodic (gas-phase or generalized Born) simulations, but the codes are written
and tested for the case of a single, compact quantum region.

The partitioned system is characterized by an effective Hamiltonian, Heff , which operates
on the system’s wav efunction Ψ, which is dependent on the position of the MM nuclei, xMM , the
QM nuclei, xQM , and the position of the QM electrons, xe, to yield the system energy Eeff :

(6.14)Heff Ψ(xe, xQM, xMM) = E(xQM, xMM)Ψ(xe, xQM, xMM)

The effective Hamiltonian consists of three components - one for the QM region, one for the MM
region and a term that describes the interaction of the QM and MM regions, implying that like-
wise the energy of the system can be divided into three components. If the total energy of the

3/3/06

Using Sander QM/MM calculations Page 141

system is re-written as the expectation value of Heff then the MM term can be removed from the
integral since it is independent of the position of the electrons:

(6.15)Eeff = 〈Ψ|HQM + HQM /MM|Ψ〉 + EMM

In the QM/MM implementation in sander, Emm is calculated classically from the MM atom posi-
tions using the Amber force field equation and parameters, whereas HQM is evaluated using the
chosen QM method.

The interaction term HQM /MM is more complicated, representing the interaction of the MM
point charges with the electron cloud of the QM atoms as well as the interaction between MM
point charges and the QM atomic cores. For the case where there are no covalent bonds between
the atoms of the QM and MM regions this term is the sum of an electrostatic term and a Lennard-
Jones (VDW) term and can be written as:

(6.16)HQM /MM = −
e
Σ

m
Σ

⎡
⎢
⎣
qmhelectron(xe, xMM) + zqqmhcore(xQM, xMM) + ⎛

⎝
A

r12
−

C

r6
⎞
⎠
⎤
⎥
⎦

where the subscripts e, m and q refer to the electrons, the MM nuclei and the QM nuclei repec-
tively. Here qm is the charge on MM atom m, zq is the core charge (nucleus minus core electrons)
on QM atom q, rqm is the distance between atoms q and m, and A and C are Lennard-Jones inter-
action parameters. For systems that have covalent bonds between the QM and MM regions, the
situation is more complicated, as dicsussed later.

If one evalutes the expectation values in Eq. (6.15) over a single determinant built from
molecular orbitals

(6.17)φ i =
j

Σ cij χ j

where the cij are molecular orbital coefficients and the χ j are atomic basis functions, the total
energy depends upon the cij and on the postions xQM and xMM of the atoms. Once the energy is
known, the forces on the atoms can be obtained by using the chain rule and setting ∂Eeff /∂cij to
zero. This leads to a self-consistent (SCF) procedure to determine the cij , (with a modified Fock
matrix that contains the electric field arising from the MM charges).

The main subtelty that arises is that, for a periodic system, there are formally in infinite
number of QM/MM interactions; even for a non-periodic system, the (finite) number of such
interactions may be prohibitively large. These problems are addressed in a manner analogous to
that used for pure MM systems: a PME approach is used for periodic systems, and a (large) cutoff
may be invoked for non-periodic systems. Some details are discussed below.

6.4.3. The QM/MM interface and link atoms
The sections above dealt with situations where there are no covalent bonds between the QM

and MM regions. In many protein simulations, however, it is necessary to have the QM/MM
boundary cut covalent bonds, and a number of additional approximations have to be made. There
are a variety of approaches to this problem, including hybrid orbitals, capping potentials, and
explicit link atoms. The last option is the method available in sander.

There are a number of ways to implement a link atom approach that deal with the way the
link atom is positioned, the way the forces on the link atom are propagated, and the way non-
bonding interactions around the link atom are treated. In Amber 9 we have implemented an
approach that treats link atoms in a different way than earlier versions of the codes. Each time an
energy or gradient calculation is to be done, the link atom coordinates are re-generated from the

3/3/06

Using Sander QM/MM calculations Page 142

current coordinates of the QM and MM atoms making up the QM-MM covalent pair. The link
atom is placed along the bond vector joining the QM and MM atom, at a distance dL−QM from the
QM atom. By default dL−QM is set to the equilibrium distance of a methyl C-H atom pair (1.09
Å) but this can be set in the input file. The default link atom type is hydrogen, but this can also be
specified as an input.

Since the link atom position is a function of the coordinates of the "real" atoms, it does not
introduce any new degrees of freedom into the system. The chain rule is used to re-write forces
on the link atom itself in terms of forces on the two real atoms that define its position. This is
analogous to the way in which "extra points" or "lone-pairs" are handled in MM force fields.

The remaining details of how the QM-MM boundary is treated are as follows: for the inter-
actions surrounding the link atom, the MM bond term between the QM and MM atoms is calcu-
lated classically using the Amber force field parameters, as are any angle or dihedral terms that
include at least one MM atom. The Lennard-Jones interactions between QM-MM atom pairs are
calculated in the same way as described in the section above with exclusion of 1-2 and 1-3 inter-
actions and scaling of 1-4 interactions. What remains is to specify the electrostatic interactions
between QM and MM atoms around the region of the link atom.

A number of different schemes have been proposed for handling link-atom electrostatics.
Many of these have been tested or calibrated on (small) gas-phase systems, but such testing can
neglect some considerations that are very important for more extended, condensed-phase simula-
tions. In choosing our scheme, we wanted to ensure that the total charge of the system is rigor-
ously conserved (at the correct value) during an MD simulation. Further, we strove to hav e the
Mulliken charge on the link atom (and the polarity of its bond to the nearest QM atom) adopt rea-
sonable values and to exhibit only small fluctuations during MD simulations. In Amber 9, place
a real description of the electrostatic model here!

Since the MM atoms that make up the QM region (including the MM link pair atom) have
their charges from the prmtop file essentially replaced with Mulliken charges it is important to
consider the issue of charge conservation. The QM region (including the link atoms) by defini-
tion must have an integer charge. This is defined by the &qmmm namelist variable qmcharge. If
the MM atoms (including the MM link pair atoms) that make up the QM region have prmtop
charges that sum to the value of qmcharge then there is no problem. If not, there are two options
for dealing with this charge, defined by the namelist variable adjust_q. A value of 1 will distribute
the difference in charge equally between the nearest nlink MM atoms to the MM link pair atoms.
A value of 2 will distribute this charge equally over all of the MM atoms in the simulation
(excluding MM link pair atoms).

6.4.4. Generalized Born implicit solvent
The implementation of Generalized Born (GB) for QM/MM calculations is based on the

method described by Pellegrini and Field [79]. Here, the total energy is taken to be Eeff from Eq.
(6.15) plus Egb from Eq. (6.2). In Egb, charges on the QM atoms are taken to be the Mulliken
charges determined from the quantum calculation; hence these charges depend upon the moleucu-
lar orbital coefficients cij as well as the positions of the atoms.

As with conventional QM/MM simulations, one then solves for the cij by setting
∂Etot /∂cij = 0. This leads to a set of SCF equations with a Fock matrix modified not only by the
presence of MM atoms (as in "ordinary" QM/MM simulations), but also modified by the presence
of the GB polarization terms. Once self-consistency is achieved, the resulting Mulliken charges
can be used in the ordinary way to compute the GB contribution to the total energy and forces on

3/3/06

Using Sander QM/MM calculations Page 143

the atoms.

6.4.5. Ewald and PME
The support for long range electrostatics in QM/MM calculations is based on a modification

of the Nam, Gao and York Ewald method for QM/MM calculations [80]. This approach works in
a similar fashion to GB in that Mulliken charges are used to represent long range interactions.
Within the cut-off, interactions between QM and MM atoms are calculated using a full multipole
treatment. Outside of the cut off the interaction is based on pairwise point charge interactions.
This leads to a slight discontinuity at the QM/MM cut off boundary but this does not so far seem
to be a significant limitation.

The implementation in Ref [80]. uses an Ewald sum for both QM/QM and QM/MM elec-
trostatic interactions. This can be expensive for large MM regions, and sander uses a PME model
(rather than an Ewald sum) for QM/MM interactions. This is controlled by the qm_pme variable
discussed below.

6.4.6. Hints for running successful QM/MM calculations
Required Parameters and Prmtop Creation

QM/MM calculations without link atoms require only mass, van der Waals and GB radii in
the prmtop file. All charges and bonds, angle and dihedral parameters involving QM atoms are
neglected. (Note that when SHAKE is applied, the bonds are constrained to the ideal MM values,
ev en when these are part of a QM region; hence, for this case, it is important to have correct bond
parameters in the QM region.) The simplest general prescription for setting things up is to use
antehcamber and LeaP to create a reference force field, since "placeholders" are required in the
prmtop file even for things that will be neglected. This also allows you to run comparison simula-
tions between pure MM and QM/MM simulations, which can be helpful if problems are encoun-
tered in the QM/MM calculations.

The use of antechamber to construct a pure MM reference system is even more useful when
there are link atoms, since here MM parameters for bonds, angles and dihedrals that cross the
QM/MM boundary are also needed.

Choosing the QM region

There are no good universal rules here. Generally, one might want to have as large a QM
region as possible, but having more than 80-100 atoms in the QM region will lead to simulations
that are very expensive. One should also remember that for many features of conformational
analysis, a good MM force field may be better than a semiempirical or DFTB quantum descrip-
tion. In choosing the QM/MM boundary, it is better to cut non-polar bonds (such as C−C single
bonds) than to cut unsaturated or polar bonds. Link atoms are not placed between bonds to
hydrogen. Thus cutting across a C-H bond will NOT giv e you a link atom across that bond. (This
is not currently tested for in the code and so it is up to the user to avoid such a situation.) Further-
more, link atoms are restricted to one per MM link pair atom. This is tested for during the detec-
tion of link atoms and an error is generated if this requirement is violated. This would seem to be
a sensible policy otherwise you could have two link atoms too close together. See the comments
in qm_link_atoms.f for a more in-depth discussion of this limitation.

Choice of electrostatic cutoff

3/3/06

Using Sander QM/MM calculations Page 144

The implementation of the non-bonded cut off in QM/MM simulations is slightly different
to regular MM simulations. The cut off between MM-MM atoms is still handled in a pairwise
fashion. However, for QM atoms any MM atom that is within qmcut of ANY QM atom is
included in the interaction list for all QM atoms. This means that the value of qmcut essentially
specifies a shell around the QM region rather than a spherical shell around each individual QM
atom. Ideally the cut off should be large enough that the energy as a function of the cutoff has
converged. For non-periodic, generalized Born simulations, a cutoff of 15 to 20 Å seems suffi-
cient in some tests. (Remember that long-range electrostatic interactions are reduced by a factor
of 80 from their gas-phase counterparts, and by more if a non-zero salt concentration is used.)
For periodic simulations, the cutoff only serves to divide the interactions between "direct" and
"reciprocal" parts; as with pure MM calculations, a cutoff of 8 or 9 Å is sufficient here.

Parallel simulations

The built-in QM/MM implementation currently supports execution in parallel, however, the
implementation is not fully parallel. At present all parts of the QM simulation (for qmtheory<=6
and idc=0) are parallel except the density matrix build and the matrix diagonalisation. For small
QM systems these two operations do not take a large percentage of time and so acceptable scaling
can be seen to around 8 cpus (depending on interconnect speed). However, for large QM systems
the matrix diagonalisation time will dominate and so the scaling will not be as good.

6.4.7. General QM/MM &qmmm Namelist Variables
An example input file for running a simple QM/MM MD simulation is given in the box.

The &qmmm namelist contains variables that allow you to control the options used for a QM/MM

Example QMMM MD Script for Sander 9

Example QMMM MD Script for Sander 9
&cntrl
imin=0, nstlim=10000, (perform MD for 10,000 steps)
dt=0.0002, (2 fs time step)
ntt=1, tempi=0.1, temp0=300.0 (Berendsen temperature control)
ntb=1, (Constant volume periodic boundaries)
ntf=2, ntc=2, (Shake hydrogen atoms)
cut=8.0, (8 angstrom classical non-bond cut off)
ifqnt=1 (Switch on QM/MM coupled potential)

/
&qmmm
qmmask=’:753’ (Residue 753 should be treated using QM)
qmcharge=-2, (Charge on QM region is -2)
qmtheory=1, (Use the PM3 semi-empirical Hamiltonian)
qmcut=8.0 (Use 8 angstrom cut off for QM region)
/

3/3/06

Using Sander QM/MM calculations Page 145

simulation. This namelist must be present when running QM/MM simulations and at the very
least must contain either the iqmatoms or qmmask variable which define the region to be
treated quantum mechanically. If ifqnt is set to zero then the contents of this namelist are
ignored.

QM region definition. Specify one of either iqmatoms or qmmask. Link atoms will be
added automatically along bonds (as defined in the prmtop file) that cross the QM/MM boundary.

IQMATOMS comma-separated integer list containg the atom numbers (from the prmtop
file) of the atoms to be treated quantum mechanically.

QMMASK Mask specifying the quantum atoms. E.g. :1-2, = residues 1 and 2. See mask
documentation for more info.

IDC Specifies use of the Amber built-in or DivCon for QM/MM calculations.

= 0 (default) Use the built-in Amber QM/MM code.

= 1 Use standard DivCon for QM/MM calculations. You must prepare a
separate divcon.in file to specify DivCon keywords; see Chapter 7 for
a full discussion of these options.

= 2 Use divide and conquer DivCon QM/MM calculations. This option
may be the preferred option for larger systems. It also requires a div-
con.in file for DivCon keywords; see Chapter 7.

QMCUT Specifies the size of the electrostatic cutoff in Angstroms for QM/MM elec-
trostatic interactions. By default this is the same as the value of cut chosen for
the classical region, and the default generally does not need to be changed.
Any classical atom that is within qmcut of any QM atom is included in the
pair list. For PME calculations, this parameter just affects the division of
forces between direct and reciprocal space. Note: this option only effects the
electrostatic interactions between the QM and MM regions. Within the QM
region all QM atoms see all other QM atoms regardless of their separation.
QM-MM van der Waals interactions are handled classically, using the cutoff
value specified by cut.

QM_EWALD This option specifies how long range electrostatics for the QM region should
be treated.

= 0 Use a real-space cutoff for QM-QM and QM-MM long range inter-
actions. In this situation QM atoms do not see their images and QM-
MM interactions are truncated at the cutoff. This is the default for
non-periodic simulations, and is the only option available for DFTB
calculations.

= 1 (default) Use PME or an Ewald sum to calculate long range QM-QM
and QM-MM electrostatic interactions. This is the default when run-
ning QMMM with periodic boundaries and PME.

= 2 This option is similar to option 1 but instead of varying the charges
on the QM images as the central QM region changes the QM image
charges are fixed at the Mulliken charges obtained from the previous
MD step. This approach offers a speed improvement over
qm_ewald=1, since the SCF typically converges in fewer steps, with
only a minor loss of accuracy in the long range electrostatics. This
option has not been extensively tested, although it becomes

3/3/06

Using Sander QM/MM calculations Page 146

increasingly accurate as the box size gets larger.

KMAXQX,Y,Z Specifies the maximum number of kspace vectors to use in the x, y and z
dimensions respectively when doing an Ewald sum for QM-MM and QM-QM
interactions. Higher values give greater accuracy in the long range electrostat-
ics but at the expensive of calculation speed. The default value of 5 should be
optimal for most systems.

KSQMAXQ Specifies the maximum number of K squared values for the spherical cut off
in reciprocal space when doing a QM-MM Ewald sum. The default value of
27 should be optimal for most systems.

QM_PME Specifies whether a PME approach or regular Ewald approach should be used
for calculating the long range QM-QM and QM-MM electrostatic interac-
tions.

= 0 Use a regular Ewald approach for calculating QM-MM and QM-QM
long range electrostatics. Note this option is often much slower than
a pme approach and typically requires very large amounts of mem-
ory. It is recommended only for testing purposes.

= 1 (default) Use a QM compatible PME approach to calculate the long
range QM-MM electrostatic energies and forces and the long range
QM-QM forces. The long range QM-QM energies are calculated
using a regular Ewald approach.

QMGB Specifies how the QM region should treated with generalised Born. (Note that
DFTB/SCC-DFTB calculations do not currently work with generalized Born.)

= 2 (default) As described above, the electrostatic and "polarization"
fields from the MM charges and the exterior dielectric (respectively)
are included in the Fock matrix for the QM Hamiltonian.

= 3 This is intended as a debugging option and should only be used for
single point calculations. With this option the GB energy is calcu-
lated using the Mulliken charges as with option 2 above but the fock
matrix is NOT modified by the GB field. This allows one to calculate
what the GB energy would be for a given structure using the gas
phase quantm charges. When combined with a simulation using
qmgb=2, this allows the strain energy from solvation to be calcu-
lated.

QMTHEORY Lev el of theory to use for the QM region of the simulation. (Hamiltonian).
Default is to use the semi-empirical hamiltonian PM3.

= 1 PM3 (default)

= 2 AM1

= 3 MNDO

= 4 PDDG/PM3

=5 PDDG/MNDO

= 6 PM3CARB1

= 7 DFTB/SCC-DFTB

DFTB_DOSCC Flag turning on (1) or off (0) the self-consistent-charge version of DFTB,
SCC-DFTB. Requires qm_method=7. (Default = 1)

3/3/06

Using Sander QM/MM calculations Page 147

DFTB_DISPER Flag turning on (1) or off (0) the use of a dispersion correction to the
DFTB/SCC-DFTB energy. Requires qm_method=7. It is assumed that you
have the file DISPERSION.INP_ONCHSP in your $AMBERHOME/dat/slko/
directory. This file must be obtained directly form Marcus Elstner, as
described in the beggining of this chapter. Not available for the Zn atom.
(Default = 0)

QMCHARGE Charge on the QM system in electron units (must be an integer). (Default = 0)

SPIN Spin state of the QM system. Valid values are 1 to 6. Default is 1 = singlet.
Note for a doublet(2), quartet(4) or sextet(6) you require an odd number of
electrons. Note that this option is ignored by DFTB/SCC-DFTB, which
allows only ground state calculations. In this case, the spin state will be cal-
culated from the number of electrons and orbital occupancy.

VERBOSITY Controls the verbosity of QM/MM related output. Warning: Values of 2 or
higher will produce a lot of output.

= 0 (default) - only minimial information is printed - Initial QM geome-
try and link atom positions as well as the SCF energy at every ntpr
steps.

= 1 Print SCF energy at every step to many more significant figures than
usual. Also print the number of SCF cycles needed on each step.

= 2 As 1 but also print info about memory reallocations, number of pairs
per QM atom. Also prints QM core - QM core energy, QM core -
MM charge energy and total energy.

= 3 As 2 but also print SCF convergence information at every step.

= 4 As 3 but also print forces on QM atoms due to the SCF calculation
and the coordinates of the link atoms at every step.

= 5 As 4 but also print all of the info in KJ/mol as well as KCal/mol.

TIGHT_P_CONV Controls the tightness of the convergence criteria on the density matrix in the
SCF.

= 0 (default) - loose convergence on the density matrix (or Mulliken
charges, in case of a SCC-DFTB calculation). SCF will converge if
the energy is converged to within scfconv and the largest change in
the density matrix is within 0.05*sqrt(scfconv).

= 1 Tight convergence on density(or Mulliken charges, in case of a SCC-
DFTB calculation). Use same convergence (scfconv) for both energy
and density (charges) in SCF. Note: in the SCC-DFTB case, this
option can lead to instabilities.

SCFCONV Controls the convergence criteria for the SCF calculation, in kcal/mol. In
order to conserve energy in a dynamics simulation with no thermostat it is
often necessary to use a convergence criterion of 1.0d-9 or tighter. Note, the
tighter the convergence the longer the calculation will take. Values tighter than
1.0d-11 are not recommended as these can lead to oscillations in the SCF, due
to limitations in machine precision, that can lead to convergence failures.
Default is 1.0d-8 kcal/mol. Mininum usable value is 1.0d-14.

PSEUDO_DIAG Controls the use of ’fast’ pseudo diagonalisations in the SCF routine. By
default the code will attempt to do pseudo diagonalisations whenever

3/3/06

Using Sander QM/MM calculations Page 148

possible. However, if you experience convergence problems then turning this
option off may help. Not available for DFTB/SCC-DFTB.

= 0 Always do full diagonalisation.

= 1 Do pseudo diagonalisations when possible (default).

PSEUDO_DIAG_CRITERIA
Float controlling criteria used to determine if a pseudo diagonalisation can be
done. If the difference in the largest density matrix element between two SCF
iterations is less than this criteria then a pseudo diagonalisation can be done.
This is really a tuning parameter designed for expert use only. Most users
should have no cause to adjust this parameter. (Not applicable to DFTB/SCC-
DFTB calculations.) Default = 0.05

PRINTCHARGES

= 0 Don’t print any info about QM atom charges to the output file
(default)

= 1 Print Mulliken QM atom charges to output file on every step.

PEPTIDE_CORR

= 0 Don’t apply MM correction to peptide linkages. (default)

= 1 Apply a MM correction to peptide linkages. This correction is of the
form escf = escf + htype(itype) sin(φ)2, where φ is the dihedral angle
of the H-N-C-O linkage and htype is a constant dependent on the
Hamiltonian used. (Recommended, except for DFTB/SCC-DFTB.)

ITRMAX Integer specifying the maximum number of SCF iterations to perform before
assuming that convergence has failed. Default is 1000. Typically higher values
will not do much good since if the SCF hasn’t converged after 1000 steps it is
unlikely to. If the convergence criteria have not been met after itrmax steps
the SCF will stop and the MD or minimisation will proceed with the gradient
at itrmax. Hence if you have a system which does not converge well you can
set itrmax smaller so less time is wasted before assuming the system won’t
converge. In this way you may be able to get out of a bad geometry quite
quickly. Once in a better geometry SCF convergence should improve.

QMSHAKE Controls whether shake is applied to QM atoms. Using shake on the QM
region will allow you to use larger time steps such as 2 fs with NTC=2. If,
however, you expect bonds involving hydrogen to be broken during a simula-
tion you should not SHAKE the QM region. WARNING: the shake routine
uses the equilibrium bond lengths as specified in the prmtop file to reset the
atom positions. Thus while bond force constants and equilibrium distances are
not used in the energy calculation for QM atoms the equilibrium bond length
is still required if QM shake is on.

= 0 Do not shake QM H atoms.

= 1 Shake QM H atoms if shake is turned on (NTC>1) (default).

WRITEPDB

= 0 Do not write a pdb file of the selected QM region. (default).

= 1 Write a pdb file of the QM region. This option is designed to act as
an aid to the user to allow easy checking of what atoms were

3/3/06

Using Sander QM/MM calculations Page 149

included in the QM region. When this option is set a crude pdb file
of the atoms in the QM region will be written on the very first step to
the file qmmm_region.pdb.

6.4.8. Link Atom Specific QM/MM &qmmm Namelist Variables
The following options go in the qmmm namelist and control the link atom behaviour.

LNK_DIS Distance in Å from the QM atom to its link atom. Currently all link atoms
must be placed at the same distance. Default = 1.09 Å.

LNK_ATOMIC_NO
The atomic number of the link atoms. This selects what element the link
atoms are to be. Default = 1 (Hydrogen). Note this must be an integer and an
atomic number supported by the chosen qm theory.

ADJUST_Q This controls how charge is conserved during a QMMM calculation involving
link atoms. When the QM region is defined the QM atoms and any MM atoms
involved in link bonds have their RESP charges zeroed. If the sum of these
RESP charges does not exactly match the value of qmcharge then the total
charge of the system will not be correct.

= 0 (default) - No adjustment of the charge is done.

= 1 The charge correction is applied to the nearest nlink MM atoms to
MM atoms that form link pairs. Typically this will be any MM atom
that is bonded to a MM link pair atom (a MM atom that is part of a
QM-MM bond). This results in the total charge of
QM+QMlink+MM equalling the original total system charge from
the prmtop file.

= 2 This option is similar to option 1 but instead the correction is divided
among all MM atoms (except for those adjacent to link atoms). As
with option 1 this ensures that the total charge of the QM/MM sys-
tem is the same as that in the prmtop file.

6.5. Free energies using thermodynamic integration.
Sander has the capability of doing simple thermodynamic free energy calculations, using

either PME or generalized Born potentials. When icfe is set to 1 or 2, information useful for
doing thermodynamic integration estimates of free energy changes will be computed. You must
use the "multisander" capability to create two groups, one corresponding to the starting state, and
a second corresponding to the ending state; you will need a prmtop file for each of these two end
points. Then a mixing parameter λ is used (see Eqs. 4 and 5, below) to interpolate between the
"unperturbed" and "perturbed" potential functions.

The two prmtop files that you create must have the same number of atoms, and the atoms
must appear in the same order in the two files. This is because there is only one set of coordi-
nates that are propagated in the molecular dynamics algorithm. If there are more atoms in the
intial state than in the final, "dummy" atoms must be introduced into the final state to make up the
difference. Although there is quite a bit of flexibility in choosing the initial and final states, it is
important in general that the system be able to morph "smoothly" from the intial to the final

3/3/06

Using Sander Thermodynamic integration Page 150

states.

In a free energy calculation, the system evolves according to a mixed potential (such as in
Eqs. 4 or 5, below). The essence of free energy calculations is to record and analyze the fluctua-
tions in the values of V0 and V1 (that is, what the energies would have been with the endpoint
potentials) as the simulation progresses. For thermodynamic integration (which is a very straight-
forward form of analysis) the required averages can be computed "on-the-fly" (as the simulation
progresses), and printed out at the end of a run. For more complex analyses (such as the Bennett
acceptance ratio scheme), one needs to write out the history of the values of V0 and V1 to a file,
and later post-process this file to obtain the final free energy estimates.

There is not room here to discuss the theory of free energy simulations, and there are many
excellent discussions elsewhere [15,127,128]. Such calculations are demanding, both in terms of
computer time, and in a level of sophistication to avoid pitfalls that can lead to poor convergence.
Since there is no one "best way" to estimate free energies, sander primarily provides the tools to
collect the statistics that are needed. Assembling these into a final answer, and assessing the
accuracy and significance of the results, general requires some calculations outside of what
Amber provides, per se. The discussion here will assume a certain level of familiarity with the
basis of free energy calculations.

The basics of the multisander functionality are given below, but the mechanics are really
quite simple. You start a free energy calculation as follows:

mpirun -np 4 sander -ng 2 -groupfile <filename>

Since there are 4 total cpu’s in this example, each of the two groups will run in parallel with 2
cpu’s each. The number of processors must be a multiple of two. The groups file might look like
this:

-O -i mdin -p prmtop.0 -c eq1.x -o md1.o -r md1.x -inf mdinfo

-O -i mdin -p prmtop.1 -c eq1.x -o md1b.o -r md1b.x -inf mdinfob

The input (mdin) and starting coordinate files must be the same for the two groups. Furthermore,
the two prmtop files must have the same number number of atoms, in the same order (since one
common set of coordinates will be used for both.) The simulation will use the masses found in
the first prmtop file; in classical statistical mechanics, the Boltzmann distribution in coordinates is
independent of the masses so this should not represent any real restriction.

On output, the two restart files should be identical, and the two output files should differ
only in trivial ways such as timings; there should be no differences in any energy-related quanti-
ties. For our example, this means that one could delete the md1b.o and md1b.x files, since the
information they contain is also in md1.o and md1.x. (It is a good practice, however, to check
these file identities, to make sure that nothing has gone wrong.)

ICFE The basic flag for free energy calculations. The default value of 0 skips such
calcuations. Setting this flag to 1 turns them on, using the mixing rules in Eq.
(5), below. Setting the flag to 2 uses the mixing rules of Eqs. (6) and (8),
below.

CLAMBDA The value of λ for this run, as in Eqs. (4) and (5), below. Zero corresponds to
the unperturbed Hamiltonian (or the first of the two multisander groups) λ=1
corresponds to the perturbed Hamiltonian, or the second of the two multi-
sander groups.

3/3/06

Using Sander Thermodynamic integration Page 151

KLAMBDA The exponent in Eq. (5), below.

Unlike gibbs, the program itself does not compute free energies; it is up to the user to com-
bine the output of several runs (at different values of λ) and to numerically estimate the integral:

(6.18)∆A ≡ A(λ = 1) − A(λ = 0) =
1

0
∫ 〈∂V /∂λ〉λ dλ

If you understand how free energies work, this should not be at all difficult. However, since the
actual values of λ that are needed, and the exact method of numerical integration, depend upon
the problem and upon the precision desired, we have not tried to pre-code these into the program.

The simplest numerical integration is to evaluate the integrand at the midpoint:

(6.19)∆A ≈ 〈∂V /∂λ〉1
2

This might be a good first thing to do to get some picture of what is going on, but is only expected
to be accurate for very smooth or small changes, such as changing just the charges on some
atoms. Gaussian quadrature formulas of higher order are generally more useful:

(6.20)∆A ≈
n

i=1
Σ wi〈∂V /∂λ〉λ i

Some weights and quadrature points are given in the accompanying table; other formulas are pos-
sible [129], but the Gaussian ones listed there are probably the most useful. The formulas are
always symmetrical about λ = 0.5, so that λ a

i and λ b
i both have the same weight. For example, if

you wanted to use 5-point quadrature, you would need to run five sander jobs, setting λ to
0.04691, 0.23076, 0.5, 0.76923, and 0.95308 in turn. (Each value of λ should have an equilibra-
tion period as well as a sampling period; this can be achieved by setting the ntave parameter.)
You would then multiply the values of < ∂V /∂λ > by the weights listed in the Table, and compute
the sum.

When icfe=1 and klambda has its default value of 1, the simulation uses the mixed potential
function:

(6.21)V (λ) = (1 − λ)V0 + λV1

where V0 is the potential with the original Hamiltonian, and V1 is the potential with the perturbed
Hamiltonian. The program also computes and prints ∂V /∂λ and its averages; note that in this
case, ∂V /∂λ = V1 − V0. This is referred to as linear mixing, and is often what you want unless you
are making atoms appear or disappear. If some of the perturbed atoms are "dummy" atoms (with
no van der Waals terms, so that you are making these atoms "disappear" in the perturbed state),
the integrand in Eq. (6.18) diverges at λ = 1; this is a mild enough divergence that the overall inte-
gral remains finite, but it still requires special numerical integration techniques to obtain a good
estimate of the integral [128]. Sander implements one simple way of handling this problem: if
you set klambda > 1, the mixing rules are:

(6.22)V (λ) = (1 − λ)kV0 + [1 − (1 − λ)k]V1

where k is given by klambda. Note that this reduces to Eq. (6.21) when k = 1, which is the
default. If klambda ≥ 4, the integrand remains finite as λ → 1 [128]. We hav e found that setting
klambda = 6 with disappearing groups as large as tryptophan works well. Note that the behavior
of ∂V /∂λ as a function of λ is not monotonic when klambda > 1. You may need a fairly fine
quadrature to get converged results for the integral, and you may want to sample more carefully in

3/3/06

Using Sander Thermodynamic integration Page 152

Abcissas and weights for Gaussian integration
n λ a

i λ b
i wi

1 0.50000 1.00000

2 0.21132 0.78867 0.50000

3 0.11270 0.88729 0.27777
0.50000 0.44444

5 0.04691 0.95308 0.11846
0.23076 0.76923 0.23931
0.50000 0.28444

7 0.02544 0.97455 0.06474
0.12923 0.87076 0.13985
0.29707 0.70292 0.19091
0.50000 0.20897

9 0.01592 0.98408 0.04064
0.08198 0.91802 0.09032
0.19331 0.80669 0.13031
0.33787 0.66213 0.15617
0.50000 0.16512

12 0.00922 0.99078 0.02359
0.04794 0.95206 0.05347
0.11505 0.88495 0.08004
0.20634 0.79366 0.10158
0.31608 0.68392 0.11675
0.43738 0.56262 0.12457

regions where ∂V /∂λ is changing rapidly.

When icfe is set to 2, a different set of mixing rules is used. This was implemented by Ilyas
Yildirm and Harry Stern and the University of Rochester. Let the "mixing" function be f (λ) so
that the effective potential becomes

(6.23)V (λ) = f (λ)V0 + [1 − f (λ)]V1

Then we want to ensure the following conditions on the function f :

(6.24)f (λ = 0) = 1; f (λ = 1) = 0; f (n)(λ = 0) = f (n)(λ = 1) = 0

where f (n)(λ) is the nth derivative of the mixing function, and Eq. (6.24) should hold for all val-
ues of n up to at least 4. One function that satisfies this for n < k is

(6.25)f (λ, k) = (1 − λ)k
k−1

i=0
Σ comb(k −1 + i, i)λ i

where the combination funciton is

3/3/06

Using Sander Thermodynamic integration Page 153

(6.26)comb(x, y) = x!/[(x − y)!y!]

[Note that when k = 1, Eq. (6.25) reduces to Eq. (6.21).] This modification allows dummy atoms
to be a either (or both) of the end points of the modification for sufficiently large values of k. Val-
ues of k (variable klambda) of 6 or 7 hav e given good results; see the test cases or tutorials for
more information.

Notes:

(1) This capability in sander is implemented by calling the force() routine twice on each step,
once for λ=0 and once for λ=1. This increases the cost of the simulation, but involves
extremely simple coding.

(2) Eq. (6.22) is designed for having dummy atoms in the perturbed Hamiltonian, and "real"
atoms in the regular Hamiltonian. You must ensure that this is the case when you set up
the system in LEaP. If you need dummy atoms in V0, or in both end states, use icfe=2.

(3) One common application of this model is to pKa calculations, where the charges are
mutated from the protonated to the deprotonated form. Since H atoms bonded to oxygen
already have zero van der Waals radii (in the Amber force fields and in TIP3P water),
once their charge is removed (in the deprotonated form) they are really then like dummy
atoms. For this special situation, there is no need to use klambda > 1: since the van der
Waals terms are missing from both the perturbed and unperturbed states, the proton’s
position can never lead to the large contributions to < V1 − V0 > that can occur when one
is changing from a zero van der Waals term to a finite one.

(4) The implementation requires that the masses of all atoms be the same on all threads. To
enforce this, the masses found in the first prmtop file (for V0) are used for V1 as well. In
classical statistical mechanics, the canonical distribution of configurations (and hence of
potential energies) is unaffected by changes in the masses, so this should not pose a limi-
tation. Since the masses in the second prmtop file are ignored, they do not have to match
those in the first prmtop file.

(5) Special care needs to be taken when using SHAKE for atoms whose force field parame-
ters differ in the two end points. The same bonds must be SHAKEN in both cases, and
the equilibrium bond lengths must also be the same. The easiest way to ensure this is to
use the noshakemask input to remove SHAKE from the regions that are being perturbed.
You must do this manually, as the current code does not have any internal idea of "per-
turbed" and "unperturbed" atoms. (This is a change from earlier versions of Amber, which
used a pertprmtop file, and which automatically removed SHAKE from the perturbed
parts of the system.)

6.6. Targeted MD
The targeted MD option adds an additional term to the energy function based on the mass-

weighted root mean square deviation of a set of atoms in the current structure compared to a ref-
erence structure. The reference structure is specified using the -ref flag in the same manner as is
used for Cartesian coordinate restraints (NTR=1). Targeted MD can be used with or without posi-
tional restraints. If positional restraints are not applied (ntr=0), sander performs a best-fit of the
reference structure to the simulation structure based on selection in tgtfitmask and calculates the
RMSD for the atoms selected by tgtrmsmask. The two masks can be identical or different. This
way, fitting to one part of the structure but calculating the RMSD (and thus restraint force) for
another part of the structure is possible. If targeted MD is used in conjunction with positional

3/3/06

Using Sander Targeted MD Page 154

restraints (ntr=1), only tgtrmsmask should be given in the control input because the molecule is
’fitted’ implicitly by applying positional restraints to atoms specified in restraintmask.
The energy term has the form:

E = 0.5 * TGTMDFRC * NATTGTRMS * (RMSD-TGTRMSD)**2

The energy will be added to the RESTRAINT term. Note that the energy is weighted by the num-
ber of atoms that were specified in the tgtrmsmask (NATTGTRMS). The RMSD is the root mean
square deviation and is mass weighted. The force constant is defined using the tgtmdfrc variable
(see below). This option can be used with molecular dynamics or minimization. When targeted
MD is used, sander will print the current values for the actual and target RMSD to the energy
summary in the output file.

ITGTMD

= 0 no targeted MD (default)

= 1 use targeted MD

TGTRMSD Value of the target RMSD. The default value is 0. This value can be changed
during the simulation by using the weight change option.

TGTMDFRC This is the force constant for targeted MD. The default value is 0, which will
result in no penalty for structure deviations regardless of the RMSD value.
Note that this value can be negative, which would force the coordinates
AWAY from the reference structure.

TGTRMSMASK Define the atoms that will be used for the rms superposition between the cur-
rent structure and the reference structure. Syntax is in Chapter 11.5.

TGTFITMASK Define the atoms that will be used for the rms difference calculation (and
hence the restraint force), as outlined above. Syntax is in Chapter 11.5.

One can imagine many uses for this option, but a few things should be kept in mind. Since
there is currently only one reference coordinate set, there is no way to force the coordinates to any
specific structure other than the reference. To move a structure toward a reference coordinate set,
one might use an initial tgtrmsd value corresponding to the actual RMSD between the input and
reference (inpcrd and refc). Then the weight change option could be used to decrease this value to
0 during the simulation. To move a structure away from the reference, one can increase tgtrmsd to
values larger than zero. The minimum for this energy term will then be at structures with an
RMSD value that matches tgtrmsd. Keep in mind that many different structures may have similar
RMSD values to the reference, and therefore one cannot be sure that increasing tgtrmsd to a given
value will result in a particular structure that has that RMSD value. In this case it is probably
wiser to use the final structure, rather than the initial structure, as the reference coordinate set, and
decrease tgtrmsd during the simulation. A negative force constant tgtmdfrc can be used, but this
can cause problems since the energy will continue to decrease as the RMSD to the reference
increases.

Also keep in mind that phase space for molecular systems can be quite complex, and this
method does not guarantee that a low energy path between initial and target structures will be fol-
lowed. It is possible for the simulation to become unstable if the restraint energies become too
large if a low-energy path between a simulated structure and the reference is not accessible.

Note also that the input and reference coordinates are expected to match the prmtop file and
have atoms in the same sequence. No provision is made for symmetry; rotation of a methyl group
by 120° would result in a non-zero RMSD value.

3/3/06

Using Sander Umbrella sampling Page 155

6.7. Potentials of mean force using umbrella sampling.
Another free energy quantity that is accessible within sander is the ability to compute

potentials of mean force (at least for simple distance, angle, or torsion variables) using umbrella
sampling. The basic idea is as follows. You add an artificial restraint to the system to bias it to
sample some coordinate in a certain range of values, and you keep track of the distribution of val-
ues of this coordinate during the simulation. Then, you repeatedly move the minimum of the
biassing potential to different ranges of the coordinate of interest, and carry out more simulations.
These different simulations (often called "windows") must have some overlap; that is, any partic-
ular value of the coordinate must be sampled to a significant extent in more than one window.
After the fact, you can remove the effect of the biassing potential, and construct a potential of
mean force, which is the free energy profile along the chosen coordinate.

The basic ideas have been presented in many places [130-134], and will not be repeated
here. The implementation in sander follows two main steps. First, restraints are set up (using the
distance and angle restraint files) and the DUMPFREQ parameter is used to create "history" files
that contain sampled values of the restraint coordinate. Second, a collection of these history files
is analyzed (using the so-called "weighted histogram" or WHAM method [132-134]) to generate
the potentials of mean force. As with thermodynamic integration, the sander program itself does
not compute these free energies; it is up to the user to combine the output of several windows into
a final result. For many problems, the programs prepared by Alan Grossfield
(http://dasher.wustl.edu/alan/) are very convenient, and the sander output files are
compatible with these codes.

A simple example. The input below shows how one window of a potential of mean force
might be carried out. The coordinate of interest here is the chi angle of a base in an RNA duplex.
Here is the mdin file:

test of umbrella sampling of a chi torsion angle

&cntrl

nstlim=50000, cut=20.0, igb=1, saltcon=0.1,

ntpr=1, ntwr=100000, ntt=3, gamma_ln=0.2,

ntx=5, irest=1,

ntc=2, ntf=2, tol=0.000001,

dt=0.001, ntb=0,

nmropt=1,

/

&wt type=’DUMPFREQ’, istep1=10 /

&wt type=’END’ /

DISANG=chi.RST

DUMPAVE=chi_vs_t.170

The items in the &cntrl namelist are pretty standard, and not important here, except for
specifying nmropt=1, which allows restraints to be defined. (The name of this variable is an his-
torical artifact: distance and angle restraints were originally introduced to allow NMR-related
structure calculations to be carried out. But they are also very useful for cases, like this one, that
have nothing to do with NMR.) The DUMPFREQ command is used to request a separate file be
created to hold values of the torsion angle; this will have the name chi_vs_t.170 given in the
DUMPAVE file redirection command.

3/3/06

Using Sander Umbrella sampling Page 156

The torsion angle restraint itself is given in the chi.RST file:

torsion restraint for chi of residue 2

&rst iat=39,40,42,43, r1=0., r2=170., r3=170., r4=360., rk2 = 30.,

rk3 = 30., /

The iat variable gives the atom numbers of the four atoms that define the torsion of interest. We
set r2 = r3 and rk2 = rk3 to obtain a harmonic biassing potential, with a minimum at 170o. The
values r1 and r4 should be far away from 170, so that the potential is essentially harmonic every-
where. (It is not required that biassing potentials be harmonic, but Dr. Grossfield’s programs
assume that they are, so we enforce that here.) Subsequent runs would change the minimum in
the potential to values other than 170, creating other chi_vs_t files. These files would then be
used to create potentials of mean force. Note that the conventionally defined "force constant" is
twice the value rk2, and that the Grossfield program uses force constants measured in degrees,
rather than radians. So you must perform a unit conversion in using those programs, multiplying
rk2 by 0.0006092 (= 2(π /1 80)2) to get a equivalent force constant for a torsional restraint.

6.8. Steered Molecular Dynamics (SMD) and the Jarzynski Relationship
Background

SMD applies an external force onto a physical system, and drives a change in coordinates
within a certain time. Many leading applications have come from Klaus Schulten’s group [135].
An implementation where the coordinate in question changes in time at constant velocity is coded
in this version of Amber. The present implementation has been done by the group of Prof. Dario
Estrin in Buenos Aires <dario@q1.fcen.uba.ar> by Marcelo Marti <marcelomarti@yahoo.com>
and Alejandro Crespo <alec@qi.fcen.uba.ar>, and in the group of Prof. Adrian Roitberg at the
University of Florida <roitberg@ufl.edu> [136].

The method should be thought of as an umbrella sampling where the center of the restraint
is time-dependent as in:

Vrest(t) = (1 /2)k[x − x0(t)] 2

where x could be a distance, and angle or a torsion between atoms or groups of atoms.

This methodology can be used then to drive a physical process such as ion diffusion, confor-
mational changes and many other applications. By integrating the force over time (or distance), a
generalized work can be computed. This work can be used to compute free energy differences
using the so- called Jarzynski relationship [137-139]. This method states that the free energy dif-
ference between two states A and B (differing in their values of the generalized coordinate x) can
be calculated as

exp(−∆G/kBT) = < exp(−W /kBT) >A

This means that by computing the work between the two states in question, and averaging over
the initial state, equilibrium free energies can be extracted from non-equilibrium calculations. In
order to make use of this feature, SMD calculations should be done, with different starting coordi-
nates taken from equilibrium simulations. This can be done by running sander multiple times, or
by running multisander. There are examples of the various modes of action under the test/jar
directories in the amber distribution.

3/3/06

Using Sander Steered molecular dynamics Page 157

Implementation and usage

To set up a SMD run, set the jar variable in the &cntrl namelist to 1. The change in coor-
dinates is performed from a starting to an end value in nstlim steps.

To specify the type and conditions of the restraint an additional ".RST" file is used as in
nmropt=1. (Note that jar=1 internally sets nmropt=1.) The restraint file is similar to that of
NMR restraints (see Section 6.12.1), but fewer parameters are required. For instance, the follow-
ing RST file could be used:

Change distance between atoms 485 and 134 from 15 A to 20 A

&rst iat=485,134, r2=15., rk2 = 5000., r2a=20. /

Note that only r2, r2a and rk2 are required; rk3 and r3 are set equal to these so that the harmonic
restraint is always symmetric, and r1 and r4 are internally set so that the restrain is always opera-
tive. An SMD run changing an angle, would use three iat entries, and one changing a torsion
needs four. As in the case of NMR restraints, group inputs can also be used, using iat<0 and
defining the corresponding groups using the igr flag.

The output file differs substantially from that used in the case of nmr restraints. It contains 4
columns:

x0(t), x, force, work

Here work is computed as the integrated force over distances (or angle, or torsion). These files
can be used for later processing in order to obtain the free energy along the selected reaction coor-
dinate using Jarzynski’s equality.

Example

The following example changes the distance between two atoms along 1000 steps:

Sample pulling input

&cntrl

nstlim=1000, cut=99.0, igb=1, saltcon=0.1,

ntpr=100, ntwr=100000, ntt=3, gamma_ln=5.0,

ntx=5, irest=1, ntwx=100000000, ig = 256251,

ntc=2, ntf=2, tol=0.000001,

dt=0.002, ntb=0, tempi=300., temp0=300.,

jar=1,

/

&wt type=’DUMPFREQ’, istep1=1, /

&wt type=’END’, /

DISANG=dist.RST

DUMPAVE=dist_vs_t

LISTIN=POUT

LISTOUT=POUT

Note that the flag jar is set to 1, and redirections to the dist.RST file are given. In this example the
values in the output file dist_vs_t are written every istep=1 steps.

The restraint file dist.RST in this example is:

3/3/06

Using Sander Steered molecular dynamics Page 158

Change distance between atoms 485 and 134 from 15 A to 15.3 A

&rst iat=485,134, r2=15., rk2 = 5000., r2a=15.3, /

and the output dist_vs_t file might contain:

15.00000 15.12396 -12.39555 0.00000

15.01500 15.09446 -7.93769 -0.15250

15.03000 15.06527 -3.51962 -0.23843

15.04500 15.03889 0.60920 -0.26026

15.06000 15.02062 3.92188 -0.22627

15.07500 15.01051 6.41707 -0.14873

15.09000 15.00853 8.09781 -0.03987

15.10500 15.01917 8.52326 0.08479

15.12000 15.03271 8.65886 0.21365

15.13500 15.05121 8.30316 0.34087

15.15000 15.07348 7.57521 0.45996

15.16500 15.09981 6.44775 0.56513

15.18000 15.12038 5.89042 0.65766

15.19500 15.14401 5.03225 0.73958

15.21000 15.16543 4.39421 0.81028

15.22500 15.17906 4.52505 0.87718

15.24000 15.18605 5.30866 0.95093

15.25500 15.18570 6.81170 1.04183

15.27000 15.18451 8.39536 1.15589

15.28500 15.17963 10.33724 1.29638

15.30000 15.17747 12.00823 1.46397

explain how to interpret the results of the above file; how to run this many times, etc.

6.9. Replica Exchange Molecular Dynamics (REMD)
In the one dimensional replica-exchange method, noninteracting copies of the system (repli-

cas) are simulated concurrently at different values of some independent variable, such as tempera-
ture. Replicas are subjected to Monte Carlo move evaluation periodically, thus effecting
exchange between values of the independent variable. The replica-exchange method enables sim-
ulation in a generalized ensemble --- one in which states may be weighted by non-Boltzmann
probabilities. (However, one advantage of replica-exchange is the simplicity inherent in its use of
Boltzmann factors.) Consequently, local potential energy wells may not dominate traversal
through phase space because a replica trapped in a local minimum can escape via exchange to a
different value of the independent variable [140]. The multisander approach runs multiple sander
jobs concurrently under a single MPI program. This can be used to just run unconnected parallel
jobs, but it is more useful to use this as a platform for the replica exchange method.

The replica exchange method in temperature space for molecular dynamics (REMD)
[140-142] has been implemented on top of the framework that multisander provides. N non-inter-
acting replicas are simultaneously simulated in N separate MPI groups, each of which has its own
set of input and output files. One process from each MPI group is chosen to form another MPI
group (called the master group), in which exchanges are attempted.

3/3/06

Using Sander Replica exchange Page 159

In this REMD implementation, sander is called as a subroutine from the multisander pro-
gram. In particular, at the start of the replica exchange run, sander is called once to obtain the cur-
rent potential energies of each of the input coordinates. The current temp0 value for each replica
is also updated if it is present in the restart files (as would be the case if this is a restart of a
replica run). Note that no actual MD steps are taken during this initial sander call. Multisander
then enters a loop over the number of exchange attempts. In each loop, the first step is to calculate
the exchange probabilities between neighboring pairs of temperatures.

The N replicas are first automatically sorted in an array by their target temperatures. Half of
the N replicas (replicas with even array indices) are chosen to be exchange initiators. These initia-
tors pair with their right and left neighbors alternatively after each sander call. Topologically, the
N temperature-sorted replicas form a loop, in which the first and the last replicas are neighbors.
Therefore, N/2 exchanges are attempted in each iteration. The current potential energies and tar-
get (temp0) temperatures are used in a Metropolis-type calculation to determine the probability of
making the exchange. If the exchange is allowed between the pair, the target temperatures for the
two replicas are swapped before the next sander call. The velocities of each replica involved in
successful exchange are then adjusted by a scaling factor related to the previous and new target
temperatures.

After the exchange calculation, sander is called to perform MD following the mdin file.
After the sander run, the exchange probability is calculated again, and so on.

Before starting a replica exchange simulation, an optimal set of target temperatures should
be determined so that the exchange ratio is roughly a constant. These target temperatures deter-
mine the probability of exchange among the replicas, and the user is referred to the literature for a
more complete description of the influence of various factors on the exchange probability.

Each replica requires (for input files) or generates (for output files) its own mdin, inpcrd,
mdout, mdcrd, restrt, mdinfo, and associated files. The names are provided through the specifica-
tion of a groupfile on the command line with the -groupfile groupfile option. The groupfile file
contains a separate command line for each of the replicas or multisander instances, one per line
(with no extra lines except for comments, which must have a ’#’ in the first column). To choose
the number of replicas or multisander instances, the -ng N command line option is used (in this
case to specify N separate instances.) If the number of processors (for the MPI run) is larger than
N (and also a multiple of N), each replica or multisander instance will run on a number of proces-
sors equal to the total specified on the command line divided by N. Note that in the groupfile, the
-np option is currently ignored, i.e. each replica or multisander instance is currently hardcoded to
run on an equivalent number of processors.

For example, an 8-replica REMD job will need 8 mdin and 8 inpcrd files. Then, the group-
file might look like this:

#

multisander or replica exchange group file

#

replica 1

-O -i mdin.rep1 -o mdout.rep1 -c inpcrd.rep1 -r restrt.rep1 -x mdcrd.rep1

replica 2

-O -i mdin.rep2 -o mdout.rep2 -c inpcrd.rep2 -r restrt.rep2 -x mdcrd.rep2

replica 3

-O -i mdin.rep3 -o mdout.rep3 -c inpcrd.rep3 -r restrt.rep3 -x mdcrd.rep3

3/3/06

Using Sander Replica exchange Page 160

replica 4

-O -i mdin.rep4 -o mdout.rep4 -c inpcrd.rep4 -r restrt.rep4 -x mdcrd.rep4

replica 5

-O -i mdin.rep5 -o mdout.rep5 -c inpcrd.rep5 -r restrt.rep5 -x mdcrd.rep5

replica 6

-O -i mdin.rep6 -o mdout.rep6 -c inpcrd.rep6 -r restrt.rep6 -x mdcrd.rep6

replica 7

-O -i mdin.rep7 -o mdout.rep7 -c inpcrd.rep7 -r restrt.rep7 -x mdcrd.rep7

replica 8

-O -i mdin.rep8 -o mdout.rep8 -c inpcrd.rep8 -r restrt.rep8 -x mdcrd.rep8

Note that the mdin and inpcrd files are not required to be ordered by their target temperatures
since the temperatures of the replicas will not remain sorted during the simulation. Sorting is per-
formed automatically at each REMD iteration as described above. Thus one can restart REMD
simulations without modifying the restart files from the previous REMD run (see below for more
information about restarting REMD).

It is important to ensure that the target temperature (specified using temp0) is the only dif-
ference among the mdin files for the replicas, otherwise the outcome of an REMD simulation may
be unpredictable since each replica may be performing a different type of simulation. However, in
order to accommodate advanced users, the input files are not explicitly compared.

Using replica excange leads to some changes in the default behavior and output files since
REMD calls the sander routine multiple times during a single REMD simulation, with output files
combined from each REMD iteration. Thus, the multiple iterations of a single REMD MD simu-
lation will generate a single set of output files. The trajectory outputs (mdcrd) of each sander call
(each REMD iteration) are combined by enabling file appending.

6.9.1. Restarting REMD simulations
It is recommended that each REMD run generate a new set of output files (such as mdcrd),

but for convenience one may use -A in the command line in order to append output to existing
output files. This can be a useful option when restarting REMD simulations. As noted above, file
appending is always used after the first iteration (first exchange attempt) in REMD. The use of -A
on the command line only affects how sander treats any existing files during the first iteration of
REMD. If -A is used, files that were present before starting the REMD simulation are appended
to throughout the new simulation. Note that this can seriously affect performance on systems
where the file writing becomes rate limiting. If -O is used, any files present are overwritten dur-
ing the first iteration, and then subsequent iterations append to these new files.

At the end of a REMD simulation, the target temperature of each replica is most likely not
the same as it was at the start of the simulation (due to exchanges). If one wishes to continue this
simulation, sander will need to know that the target temperatures have changed. Since the target
temperature is normally specified in the mdin file (using temp0), the previous mdin files would all
need to be modified to reflect changes in target temperature of each replica. In order to simplify
this process, the program will write the current target temperature as additional information in the
restart files during an REMD simulation. When an REMD simulation is started, the program will
check to see if the target temperature is present in the restart file. If it is present, this value will
override the target temperature specified using temp0 in the mdin file. In this manner, one can
restart the simulation from the set of restart files and the program will automatically update the

3/3/06

Using Sander Replica exchange Page 161

target temperature of each replica to correspond to the final target temperature from the previous
run. If the target temperature is not present (as would be the case for the first REMD run), the cor-
rect values should be present in the mdin files.

6.9.2. Content of the output files
Standard (non-REMD) sander simulations produce a significant amount of data at the start

and end of the simulation. Since sander is called after each REMD exchange attempt (possibly
each 100-1000 MD steps), the output files will become quite large. In order to maintain an energy
archive while saving disk space, the roles of mdout and mdinfo are therefore switched during
REMD simulation. The mdout file is created and overwritten for each sander call, and only con-
tains information pertinent to this call. The energy archive for the entire set of REMD iterations is
placed into the mdinfo file. In non-REMD simulations, mdinfo only contains the most recent
energy information.

An important user-controllable option exists for writing output files (repcrd &cntrl
namelist variable, see below). For mdinfo and mdcrd, two methods of file writing are permitted.
An individual mdcrd or mdinfo file (for example, mdcrd.001) can contain the history of a single
replica (which samples multiple temperatures), or it can contain all of the information for a single
target temperature (regardless of the index of the replica that employed that target temperature. In
the former case (files containing data for a single replica index), the files contain a continuous tra-
jectory in phase space but discontinuous in target temperature. Thermodynamic analysis will most
likely require postprocessing of these files such that data for each temperature can be analyzed
separately. The information required for this postprocessing (the target temperature of each
replica during the simulation) can be found in the replica log file. One should note, however, that
the current sander trajectory format does not store any information in the trajectory files other
than coordinates (such as time index or target temperature). Thus it can be difficult (or impossi-
ble) to postprocess the data if any file corruption has occurred.

For this reason, the default behavior is to write mdcrd and mdinfo files that represent a par-
ticular target temperature rather than replica index. Thus no postprocessing is required for ther-
modynamic analysis, but the trajectories do not represent a path that was physically sampled. If
desired, a continuous trajectory can be obtained by the postprocessing described above.

As mentioned earlier, mdin and inpcrd files need not be ordered by target temperature. If the
user requests that mdcrd, mdinfo and mdout files correspond to a single temperature, these files
will be ordered by target temperature. For example, mdcrd.000 would correspond to the coordi-
nate archive for the lowest temperature, mdcrd.001 would be the next highest temperature, and so
on. Note that this reordering only occurs if temperature-based output files are requested. If
replica-based output files are requested, each output file will have the same index value as the cor-
responding input files for that replica.

6.9.3. Major changes from sander when using replica exchange
Within an MPI job, as discussed above, it is now possible to run multiple sander jobs at

once, such that each job gets a subset of the total processors. To run multisander (or to specify the
number of replicas to use in a REMD run), a new command line argument:

-ng specifies the number of sander runs (replicas) to perform concurrently. Note
that at present, the number of replicas must be a divisor of the total number of
processors (specified by the MPI run command). The input and output file

3/3/06

Using Sander Replica exchange Page 162

information must be provided in a groupfile (as described earlier in this sec-
tion).

In the -DREM compiled code enabling replica-exchange, the following additional options are
available and changes in behavior from standard sander are present. First, there are two new
command line arguments:

-rem specifies the type of replica exchange simulation. Only two options are cur-
rently available. 0, no replica exchange (standard MD) (default behavior if
-rem is not specified on command line); 1, regular replica exchange (requires
-ng).

-remlog specifies the filename of a log file. This file records from left to right, for
ev ery replica and every exchange attempt, the velocity scaling factor (negative
if the exchange attempt failed), current actual temperature, current potential
energy, current target temperature, and the new target temperature. The
default value is rem.log.

Next, there are new variables in the &cntrl namelist:

REPCRD REMD output file (mdinfo and mdcrd) specifications. If 0, output files contain
data for a particular temperature (default); if 1, output files contain data for a
particular replica.

NUMEXCHG The number of exchange attempts, default 0.

NSTLIM the number of MD steps *between exchange attempts*. Note that NSTLIM is
not a new variable for REMD, but the meaning is somewhat different. The
total length of the REMD simulation will be nstlim*numexchg steps long.

6.9.4. Cautions when using replica exchange
While many variations of replica exchange have been tested with sander, all possible varia-

tions have not been tested and the option is intended for use by advanced researchers that already
have a comprehensive understanding of standard molecular dynamics simulations.

Caution should be used when creating REMD input files. Amber will check for the most
obvious errors but due to the nature of the multiple output files the reason for the error may not be
readily apparent.

The following is only a subset of things that users should keep in mind:

The number of replicas must be an even number (so that all replicas have a partner for
exchange).

Temp0 values for each replica must be unique.

Other than temp0, mdin files should normally be identical.

Temp0 values should not be changed in the nmropt=1 weight change section.

The value of irest must be 1. This means that inpcrd files must have velocities.

A groupfile is required (this was not the case in Amber8).

If high temperatures are used, it may be necessary to use a smaller time step and possibly
restraints to prevent cis/trans isomerization or chirality inversion.

Due to increased diffusion rates at high temperature, it may be good to use iwrap=1 to pre-
vent coordinates from becoming too large to fit in the restart format.

3/3/06

Using Sander Replica exchange Page 163

Note that the optimal temperature range and spacing will depend on the system. The user is
strongly recommended to read the literature in this area.

6.9.5. Replica exchange example
Below is an example of an 8-replica REMD run on 16 processors, assuming that relevant

environment variables have been properly set.

$MPIRUN -np 16 sander -ng 8 -groupfile groupfile

This input specifies that REMD should be used (-rem 1), with 8 replicas (-ng 8) and 2 pro-
cessors per replica (-np 16). Note that the total number of processors should always be a multiple
of the number of replicas.

Here is a section of a sample rem.log file produced by Amber:

replica exchange log file

Replica #, Velocity Scaling, T, Eptot, Temp0, NewTemp0, Success rate (i,i+1)

exchange 1

1 1.46 0.00 -541.20 269.50 570.90 0.00

2 1.06 0.00 -541.20 300.00 334.00 2.00

3 0.95 0.00 -541.20 334.00 300.00 0.00

4 1.06 0.00 -541.20 371.80 413.90 2.00

5 0.95 0.00 -541.20 413.90 371.80 0.00

6 1.06 0.00 -541.20 460.70 512.90 2.00

7 0.95 0.00 -541.20 512.90 460.70 0.00

8 0.69 0.00 -541.20 570.90 269.50 2.00

exchange 2

1 -1.00 0.00 -491.39 570.90 570.90 1.00

2 -1.00 0.00 -547.98 334.00 334.00 0.00

3 -1.00 0.00 -553.87 300.00 300.00 1.00

4 -1.00 0.00 -518.92 413.90 413.90 0.00

5 -1.00 0.00 -538.17 371.80 371.80 1.00

6 -1.00 0.00 -494.00 512.90 512.90 0.00

7 -1.00 0.00 -498.12 460.70 460.70 1.00

8 -1.00 0.00 -567.18 269.50 269.50 0.00

exchange 3

1 -1.00 0.00 -462.14 570.90 570.90 0.67

2 0.95 0.00 -539.83 334.00 300.00 0.00

3 1.06 0.00 -537.76 300.00 334.00 1.33

4 -1.00 0.00 -510.33 413.90 413.90 0.00

5 -1.00 0.00 -540.74 371.80 371.80 0.67

6 -1.00 0.00 -491.99 512.90 512.90 0.00

7 -1.00 0.00 -522.01 460.70 460.70 0.67

8 -1.00 0.00 -568.87 269.50 269.50 0.00

Note that a section of the log file is written for each exchange attempt. For each exchange,
the log contains a line for each replica. This line lists the replica number, the velocity scaling fac-
tor, the actual instantaneous temperature, the potential energy, the old and new target

3/3/06

Using Sander Replica exchange Page 164

temperatures, and the current overall success rate for exchange between this temperature and the
next higher temperature. Note that the velocity scaling factor will be -1.0 if the exchange was not
successful. In that case, the old and new target temperatures will be identical.

In this particular example, all of the inpcrd files were identical, and thus the potential ener-
gies listed for exchange 1 are identical. For this reason, all of the exchanges are successful. After
this exchange, MD is performed for nstlim steps, and so the potential energies are no longer iden-
tical at exchange #2.

Note that the exchange success rate may be larger than 1.0 during the first few attempts,
since each particular pair is considered only every other attempt. The success rate is the number
of accepted exchanges for the pair divided by the total number of exchange attempts, multiplied
by 2 to account for the alternating neighbors.

6.9.6. Replica exchange using a hybrid solvent model
This section describes an advanced feature of Amber that is currently under development

[22]. Users that are not already comfortable with standard replica exchange simulations should
likely get more experience with them before attempting hybrid solvent REMD calculations.

For large systems, REMD becomes intractable since the number of replicas needed to span
a giv en temperature range increases roughly with the square root of the number of degrees of
freedom in the system. Recognizing that the main difficulty in applying REMD with explicit sol-
vent lies in the number of simulations required, rather than just the complexity of each simulation,
we recently developed (OKUR JCTC 2006) a new approach in which each replica is simulated in
explicit solvent using standard methods such as periodic boundary conditions and inclusion of
long-range electrostatic interactions using PME. However, the calculation of exchange probabili-
ties (which determines the temperature spacing and thus the number of replicas) is handled differ-
ently. Only a subset of closest water molecules is retained, with the remainder temporarily
replaced by a continuum representation. The energy is calculated using the hybrid model, and the
exchange probability is determined. The original solvent coordinates are then restored and the
simulation proceeds as a continuous trajectory with fully explicit solvation. This way the per-
ceived system size for evaluation of exchange probability is dramatically reduced and fewer repli-
cas are needed.

An important difference from existing hybrid solvent models is that the system is fully sol-
vated throughout the entire MD simulation, and thus the distribution functions and solvent proper-
ties should not be affected by the use of the hybrid model in the exchange calculation. In addition,
no restraints of any type are needed for the solvent, and the solute shape and volume may change
since the solvation shells are generated for each replica on the fly at every exchange calculation.
Nearly no computational overhead is involved since the calculation is performed infrequently as
compared to the normal force evaluations. Thus the hybrid REMD approach can employ more
accurate continuum models that are too computationally demanding for use in each time step of a
standard molecular dynamics simulation. However, since the Hamiltonian used for the exchange
differs from that employed during dynamics, these simulations are approximate and are not guar-
anteed to provide correct canonical ensembles.

To use hybrid solvent REMD in Amber, 2 sets of prmtop files are needed. One is the fully
solvated prmtop used for the MD simulations. The second is the hybrid prmtop, containing only
the solute and the desired number of water molecules. Two sets of mdin files are also required, the
first set for the dynamics between exchanges and the second set for the exchange calculation. The
first set of mdin files describe the fully solvated system and are essentially the same as standard

3/3/06

Using Sander Replica exchange Page 165

REMD with explicit solvent with the addition of the numwatkeep namelist variable described
below. The second mdin set is used for the energy evaluation of the reduced system using a con-
tinuum model.

To summarize, this type of calculation requires 2 sets of mdin files, 2 prmtop files and gen-
erates 2 sets of output files. The grouplist will specify the names for the large system, and the
hybrid calculation file names will be identical to what was specified in the groupfile with the
exception that ".strip" will be appended to each input/output file name. For example, if the input
file for replica 1 is called mdin.001, a file called mdin.001.strip must also be present for the
hybrid part of the calculation.

Tw o sets of inpcrd files are not needed. At each exchange calculation (including the first)
sander will create the hybrid inpcrd based on the current coordinates for the fully solvated system.
This is done by calculating the distance of each water oxygen to the nearest solute atom, and sort-
ing the water by increasing shortest distance. The closest numwatkeep are retained and sander
will write a coordinate file containing the solute and the numwatkeep closest waters.

Note that the user must create a prmtop file for the hybrid run that matches the full system
but has only numwatkeep waters. Both prmtops must be present during the calculation. If the
hybrid prmtop has a different number of atoms than the smaller system file written by sander,
then the calculation will fail.

For a more complete example, users are directed to the hybridREMD test case in the Amber
test directory.

NUMWATKEEP The number of explicit waters that should be retained for the calculation of
potential energy to be used for the exchange calculation. Before each
exchange attempt, the closest numwatkeep waters will be retained (closest to
the solute) and the rest will be temporarily removed and then replaced after
the exchange probability has been calculated. The default value is -1, indicat-
ing that all waters should be retained (standard REMD). A value of 0 would
direct Amber to remove all of the explicit water (as in MM-PBSA) while a
non-zero value will result in some water close to the solute being retained
while the rest is removed. Currently it is not possible to select a subset of
solute atoms for determing which waters are "close". Determining the optimal
numwatkeep value is a topic of current research.

6.9.7. Cautions for hybrid solvent replica exchange
This option has not been extensively tested. The following would not be expected to work

without further modification of the code:

(1) Only the water is imaged for the creation of the stripped system. Care should be taken
with dimers (such as DNA duplexes) to ensure that the imaging is correct.

(2) Explicit counterions should probably not be used.

(3) The choice of implicit solvent model will likely have a large effect on the resulting
ensemble.

3/3/06

Using Sander Nudged elastic band Page 166

6.10. Nudged elastic band calculations

6.10.1. Background
In nudged elastic band method [143,144], the path for a conformational change is approxi-

mated with a series of images of the molecule describing the path. Minimization, with the images
at the endpoints fixed in space, of the total system energy provides a minimum energy path. Each
image between is connected to the previous and next image by "springs" along the path that keep
each image from sliding down the energy landscape onto adjacent images. NEB derives from the
plain elastic band method, pioneered by Elber and Karplus [145], which added the spring forces
to the potential of energy surface and minimized the energy of the system. The plain elastic band
method found low energy paths, but tended to cut corners in the energy landscape. NEB prevents
corner cutting by truncating the spring forces in directions perpendicular to the tangent of the
path. Furthermore, the forces from the molecular potential are truncated along the path, so that
images remain evenly spaced along the path. This leads to:

F = F + F

(6.27)F = − ∇V (P) + ((∇V (P) ⋅ τ)τ

F = [(ki+1|Pi+1 − Pi| − ki|Pi − Pi−1|) ⋅ τ]τ

where, if N is the number of atoms per image, F is the force on image i, Pi is the 3N dimensional
position vector of image i, ki is the spring constant between image i −1 and image i, V is the
potential described by the force field, and τ is the 3N dimensional tangent unit vector that
describes the path.

The simplest definition of τ is:

(6.28)τ = (Pi − Pi−1)/|Pi − Pi−1|

This definition leads to instability in the path caused by kinks that occur where the magnitude of
F is much larger than the magnitude of F . A more stable tangent definition was derived to pre-
vent kinks in the path [146] that depends upon the energies, E, of adjacent images:

If (Ei+1 > Ei > Ei−1) then τ = (Pi+1 − Pi)/|Pi+1 − Pi|

(6.29)If (Ei+1 < Ei < Ei−1) then τ = (Pi − Pi−1)/|Pi − Pi−1|

Or, if Ei is a local minima or maxima, then:

If (Ei+1 > Ei−1) then τ = [(Psub +1 − Pi)E+ + (Pi − Pi−1)E−]/|(Psub +1 − Pi)E+ + (Pi − Pi−1)E−|

(6.30)If (Ei+1 < Ei−1) then τ = [(Pi+1 − Pi)E− + (Pi − Pi−1)E+]/|(Pi+1 − Pi)E− + (Pi − Pi−1)E+|

where:

E+ = max[|Ei+1 − Ei|, |Ei−1 − Ei|]

(6.31)E− = min[|Ei+1 − Ei|, |Ei−1 − Ei|]

The spring constants can be the same between all images or they can be scaled to move the
images closer together in the regions of transition states [147]:

If (Ei > Eref) then ki = kmax − ∆k(Emax − Ei)/(Emax − Eref)

3/3/06

Using Sander Nudged elastic band Page 167

(6.32)If (Ei ≤ Eref) then ki = kmax − ∆k

Here Emax is the highest energy for an image along the path, Eref is the energy of the higher
energy endpoint, and kmax and ∆k are parameters with units of force per length. Because the
spring force applies only in directions along the path and because the potential of the energy sur-
face is zeroed along the path, the calculation is relatively insensitive to the magnitude of the
spring constants. Care must be taken, however, to select a spring constant that does not result in
higher frequency motions than those found in the system of interest [148]. At each step, before
calculating the spring forces that compose F , the images, starting with the second image, are
rotated and translated onto the previous image to find the RMSD minimum.

Energy minimization of the path is complicated by the fact that the forces are truncated
according to the tangent direction, making it impossible to define a Lagrangian [148]. Conjugate
gradient minimization, therefore, cannot be used to find the minimum energy path. An algorithm
for quenched molecular dynamics has been used to find the minimum [144]. With this method,
the component of the velocity || to the force is kept, but perpendicular components are scaled:

If (v ⋅ f ≥ 0) then v = (v ⋅ f)f

(6.33)If (v ⋅ f < 0) then v = x(v ⋅ f)f

where f is the 3N-dimensional unit force vector, v is the 3N-dimensional velocity vector, and x is
a scaling factor less than one. Recently, a super-linear minimization method was described using
an adopted basis Newton-Raphson minimizer [148].

The implementation of NEB in sander.PIMD [149] allows minimization by simulated
annealing. This requires no hypothesis for a starting path, but does require careful judgment of
the temperature and length of time required to populate the minimum energy path. The initial
coordinates can have multiple copies of the structure superimposed on the start and endpoints.
When adjacent structures are superimposed, the tangent, τ is 0 in every direction. This case is
explicitly handled so that the calculation is stable.

6.10.2. Preparing input file for NEB
The nudged elastic band capability is implemented inside sander.PIMD because of the simi-

larity between PIMD and NEB, and addles should be used to prepare the input file for NEB. The
input prmtop and inpcrd files for NEB are generated using addles. To use addles, generally you
need prmtop and inpcrd files of single molecule, which can be generated by using LEaP, then a
control parameter for addles to explictly define how the NEB prmtop and inpcrd file should be
generated. An example control parameter file (addles.in) for addles is illustrated as follows:

file rprm name=(input.prmtop) read

file rcrd name=(input.inpcrd) pack=2 read

file wprm name=(neb.prmtop) wovr

file wcrd name=(neb.inpcrd) wovr

action

˜ use original mass

omas

pimd

˜ make 20 copies of atom 1 to 22 (the whole system)

3/3/06

Using Sander Nudged elastic band Page 168

space numc=20 pick #prt 1 22 done

*EOD

For a full description of addles please refer to Section 9.2, the following is something tricks in
preparing NEB input files:

(1) Always turn on the pimd tag, otherwise you may get an unexpectabely big prmtop file
because of a huge nonbond exclusion list contain all atoms in different copy.

(2) Make sure your are making copies of the whole system, since now the PIMD implementa-
tion of sander is an all-or-nothing thing, means you can’t run partial NEB simulation cur-
rently.

(3) Make use of the pack option of rcrd(rcvd,rcbd,rcvb) to assign different coordinates for
different copies. It is necessary for NEB that different images be assigned different con-
figurations, that is why the option "pack" is added to "rcrd". To use this option, the user
need first concatenate desired coordinates together, than specify the number of coordinate
sets via "pack=n", addles then will assign coordinates to images averagely. For example,
if the inpcrd file has 4 sets of coordinates and you have 20 images. Then image 1-5 will
have coordinate set 1, image 6-10 have set 2, and so on.

6.10.3. Input Variables
INEB Flag for nudged elastic band. A value of 0 (default) means that no nudged

elastic band will be used. A value of 1 means that a NEB simulation is being
performed.

SKMAX Spring constant or kmax from above (100 by default).

SKMIN If skmin = skmax, a constant spring constant is used. Otherwise, skmin is
taken from above for scaled spring constants (50 by default).

TMODE If 1 (default), use the revised tangent definition that prevents kinks. For any
other value, use the simple (original) tangent definition.

VV If this is 1, use the quenched velocity Verlet minimization; otherwise, do not.

VFAC Scaling factor for quenched velocity Verlet algorithm. (0.0 by default)

6.11. Constant pH calculations
The constant pH molecular dynamics method has been implemented in sander by John

Mongan [150]. Constant pH is limited to implicit solvent simulations. Using the constant pH
method requires minor modifications to the process of generating the prmtop file, as well as gen-
eration of a second input file from the prmtop file, describing the titrating residues.

6.11.1. Background
Traditionally, molecular dynamics simulations have employed constant protonation states

for titratable residues. This approach has many drawbacks. First, assigning protonation states
requires knowledge of pKa values for the protein’s titratable groups. Second, if any of these pKa
values are near the solvent pH there may be no single protonation state that adequately represents
the ensemble of protonation states appropriate at that pH. Finally, since protonation states are

3/3/06

Using Sander Constant pH Page 169

constant, this approach decouples the dynamic dependence of pKa and protonation state on con-

formation.

The constant pH method implemented in sander addresses these issues through Monte
Carlo sampling of the Boltzmann distribution of protonation states concurrent with the molecular
dynamics simulation. The nature of the distribution is affected by solvent pH, which is set as an
external parameter. Residue protonation states are changed by changing the partial charges on the
atoms.

6.11.2. Preparing a system for constant pH
Amber provides definitions for titrating side chains of ASP, GLU, HIS, LYS and TYR. See

below if you need other titrating groups.

Begin by preparing your PDB file as you normally would for use with LEaP. Edit the PDB
file, replacing all histidine residue names (HIS, HID, or HIE) with HIP. Change all ASP and
ASH to AS4 and all GLU and GLH to GL4. This ensures that the prmtop file will have a hydro-
gen defined at every possible point of protonation.

Run leap, and enter the following commands:

source leaprc.ff99

loadAmberParams frcmod.mod_phipsi.1

set default PBRadii mbondi2

loadoff constph.lib

loadamberparams frcmod.constph

This loads constph.lib, which contains residue definitions for AS4 and GL4 (aspartate and gluta-
mate residues with syn and anti hydrogens on each carboxyl oxygen), and frcmod.constph which
defines improper torsions to keep the syn and anti protons on AS4 and GL4 from rotating into the
same position. Now load your edited PDB file and proceed as usual to create the prmtop and
prmcrd files.

Once you have the prmtop file, you need to generate a cpin file. The cpin file describes
which residues should titrate, and defines the possible protonation states and their relative ener-
gies. A perl script, cpinutil.pl, is provided to generate this file. It takes a PDB file as input, either
on the command line or on STDIN, and writes the cpin file to STDOUT. Note that you must gen-
erate this PDB file from the prmtop file; do not use your original PDB file. Since LEaP has
inserted extra hydrogens, the atom numbering in your original PDB file will not correspond to the
prmtop file. Here is an example of generating the PDB file and using it to create the cpin file in a
single step:

ambpdb -p prmtop < prmcrd | cpinutil.pl > cpin

The cpinutil.pl program accepts a number of flags that modify its behavior. By default, all
residues start in protonation state 0: deprotonated for ASP and GLU, protonated for LYS and
TYR, doubly protonated for HIS (i.e. HIP). Initial protonation states can be specified using the
-states flag followed by a comma delimited list of initial protonation states (see below for more
about protonation state definitions) as follows:

3/3/06

Using Sander Constant pH Page 170

ambpdb -p prmtop < prmcrd | cpinutil.pl -states 1,3,0,0,0,1 > cpin

The -system flag can be used to provide a name for the titrating system. If experimental pKa val-
ues have been defined for the system (see below), they will be written into the cpin file. Note that
experimental pKa values are used only by the analysis scripts to calculate pKa prediction error;
they are not used in any way by sander and do not need to be included.

ambpdb -p prmtop < prmcrd | cpinutil.pl -system HEWL > cpin

A number of flags are available for filtering which residues are included in the cpin file. All
residues in the cpin file, and only the residues in the cpin file, will be titrated. In general it is safe
to exclude TYR and LYS for acidic simulations and GL4 and AS4 for basic simulations. HIP
should be included in all except very acidic simulations. Note that there is currently no support
for titrating N or C terminal residues. If you have an N or C terminal residue with a titratable
sidechain, you should explicitly exclude it from the cpin file. The -resnum flag may be used to
specify which residue numbers should be retained; all others are deleted. Conversely, the -notres-
num flag can be used to specify which residue numbers are deleted; all others are retained.
Residue number refers to the numbering in the PDB file, not the index number among titrating
residues. Similarly, -resname and -notresname can be used to filter by residue type. For instance,
-notresname TYR,LYS would eliminate basic residues from the cpin file. If experimental pKa
values are known through use of the -system flag, the -minpka and -maxpka flags can be used to
filter residues by experimental pKa values.

cpinutil.pl can also take an existing cpin file as input, allowing modification or further filter-
ing of existing cpin files. See cpinutil.pl -h for a summary of options and flags.

6.11.3. Running at constant pH
Running constant pH under sander has few differences from normal operation. In the mdin

file, you must set icnstph=1 to turn on constant pH. solvph is used to set the solvent pH value.
You must also specify the period for Monte Carlo steps, ntcnstph (for period n, a Monte Carlo
step is performed every n steps). Note that only one residue is examined on each step, so you
should decrease the step period as the number of titrating residues increases to maintain a con-
stant effective step period for each residue. We hav e seen good results with fairly short periods,
in the neighborhood of 100 fs effective period for each residue (e.g. ntcnstph=5, dt=0.002 with
about 10 residues titrating).

In order to avoid having to calculate non-electrostatic contributions to protonation state tran-
sition energies, this method uses correction factors based on the relative energy differences of the
different protonation states in the Amber force field. These relative energies were calculated
under the following parameters:

cut=30.0, scee=1.2, igb=2, saltcon=0.1,

ntb=0, dt=0.002, nrespa=1,

ntt=1, tempi=300.0, temp0 = 300., tautp=2.0,

ntc=2, ntf=2, tol=0.000001,

Deviations from these parameters, or from the force field or GB radii specified above may affect
the relative energies of the protonation states, which will cause erroneous results. If you must

3/3/06

Using Sander Constant pH Page 171

deviate from these settings, you can test whether your changes will cause problems by running
long (multiple ns) titrations of the model compounds, with solvent pH equal to the model com-
pound pKa value. The model compounds are ACE-X-NME, where X is AS4, GL4, HIP, LYS or
TYR. If these titrations predict the model pKa value (4.0, 4.4, 6.5, 10.4 and 9.6, respectively),
then the parameter set is probably OK. If not, you must either change the parameter set or recal-
culate the relative energies (see section below).

Some additional command line flags have been added to sander to support constant pH
operation. The cpin file must be specified using the -cpin option. Additionally, a history of the
protonation states sampled is written to the filename specified by -cpout. Finally, a constant pH
restart file is written to the filename specified by -cprestrt. This is used to ensure that titrating
residues retain the same protonation state across restarts. The constant pH restart file is a cpin-
format file, and should be used as the cpin file when restarting the run. It will generally be longer
than the original cpin file, as it contains some amount of zeroed data, due to limitations in the For-
tran namelist implementation. The excess zero data can be removed by filtering it through cpinu-
til.pl, e.g.

cpinutil.pl cprestrt > cpin2

6.11.4. Analyzing constant pH simulations
As the simulation progresses, the protonation states that are sampled are written to the cpout

file. A section of a cpout file is included here:

Solvent pH: 2.00000

Monte Carlo step size: 2

Time step: 0

Time: 0.000

Residue 0 State: 1

Residue 1 State: 0

Residue 2 State: 1

Residue 3 State: 0

Residue 4 State: 1

Residue 5 State: 0

Residue 2 State: 0

Residue 4 State: 0

Residue 0 State: 3

Residue 1 State: 0

Residue 0 State: 0

One record is written on each Monte Carlo step. Each record is terminated by a blank line. There
are two types of records, full records (at the top of the file) and delta records (single lines, remain-
der of file). Full records are written before the run begins, on timesteps where restart files are

3/3/06

Using Sander Constant pH Page 172

written, and on the final time step (assuming these are Monte Carlo steps); delta records are writ-
ten in all other cases. The full record specifies the protonation state of each residue, along with
some additional information, while the delta records give only the protonation state for the
residue selected on the corresponding Monte Carlo step. Note that in some cases, the protonation
state for a delta record may be the same as that in an earlier record: this indicates that the Monte
Carlo protonation move was rejected. The residue numbers in cpout are indices over the titrating
residues included in the cpin file; cpout must be analyzed in conjunction with cpin to map these
indices back to the original system.

The Perl script calcpka.pl is provided as an example parser for the cpout format, and as a
utility for calculating predicted pKa values from cpout files. It takes a cpin file as its first argu-

ment and any number of cpout files for its remaining arguments. For instance:

calcpka.pl cpin cpout1 cpout2 cpout3

Output contains one line for each titrating residue in the system. Offset is the difference
between the predited pKa and the system pH. Pred is the predicted pKa. Note that predictions are

calculated assuming Henderson-Hasselbalch titration curves. Predictions are most accurate when
the absolute value of the offset is less than 2.0. If experimental pKa values have been defined for

the system (see following), then experimental and error values are also printed. Fr ac Prot is the
fraction of time the residue spends protonated and Tr ansitions gives the number of accepted pro-
tonation state transitions. Note that transitions between states with the same total protonation (e.g.
syn and anti protonated states of a carboxylic acid) are not included in this total. Average total
molecular protonation is the sum of the fractional protonations. It ranges between zero and the
number of titrating residues, and gives the average protonation of the molecule as a whole.

6.11.5. Extending constant pH to additional titratable groups
There are two major components to defining a new titrating group for constant pH. First

you must define the partial charges for each atom in the residue for each protonation state. Then
you must set the relative energies of each state.

6.11.5.1. Defining charge sets
Partial charges are most easily calculated using Antechamber and Gaussian. You must set

up a model to calculate charges for each protonation state. If the titrating group you are defining
is a polymer subunit (e.g. amino acid residue), you must adjust the charges on atoms that have
bonded interactions (including 1-4) with atoms in neighboring residues. The charges on these
atoms must be changed so they are constant across all protonation states − otherwise relative
energies of protonation states become sequence dependent. For an amino acid, this means that all
backbone atoms must have constant charges. For the residues defined here, we arbitrarily
selected the backbone charges of the protonated state to be used across all protonation states. The
total charge difference between states should remain 1; we achieved this by adjusting the charge
on the beta carbon.

3/3/06

Using Sander Constant pH Page 173

6.11.5.2. Calculating relative energies
Relative energies are used to calibrate the method such that when a model compound is

titrated at pH equal to its pKa, the energies (and thus populations) of the protonated and deproto-

nated states are equal. Relative energies of the different protonation states are calculated using
thermodynamic integration of a model compound between the charge sets defined for the differ-
ent protonation states. The model compound should be a small molecule that mimics the bonded
environment of the titratable group of interest, and for which experimental pKa data are available.

For instance, the model compound for an amino acid X is generally ACE-X-NME; the model
compound for a ligand might be the free ligand. The thermodynamic integration calculations
must be performed using exactly the same parameters and force field as you plan to use in your
constant pH simulations. Once the relative energies of the states are calculated by thermody-
namic integration, the energy difference must be adjusted to account for the pKa: the energy of the

more protonated states should be increased by pKa RT ln(1 0).

For example suppose one were developing a model for an artificial amino acid, ART, with
pKa 3.5 and two protonation states: ARP, having one proton and ARD having zero protons. After

calculating partial charges as above, you would construct a model compound having the sequence
ACE-ARP-NME and generate a prtprmtop file where the ARP charges were perturbed to the
ARD values. You would then use sander to perform thermodynamic integration between ARP
and ARD. Suppose that this showed that the energy of ARD relative to ARP was -6.3 kcal/mol.
You would assign a relative energy of -6.3 to ARD and a relative energy of 3.5RTln(10) to ARP.

6.11.5.3. Testing the titratable group definitions
Prior to large scale use of your new titratable group definition, it’s a good idea to test it by

performing a constant pH simulation on your model compound, with pH set to the model pKa.

Doing this requires generation of a cpin file, so this is a good point to modify the table of titrat-
able group definitions used by cpinutil.pl. These tables are found near the end of CPin.pm. The
table is a perl hash of 2D arrays. Each hash entry is an array of states that define a titratable
group. Each state array consists of the relative energy, the relative protonation, and the partial
charges for the state, in that order. An entry for the example given above might look like (charge
list shortened for brevity):

"ARP" => [

State 0, ARP

[3.5 * 1.3818, # Relative energy (300K)

1, # Relative protonation

-0.4157, 0.2719, -0.0014, 0.0876, -0.0152, 0.0295,],

State 1, ARD

[-6.3, # Energy

0, # Protonation

-0.4157, 0.2719, -0.0014, 0.0876, -0.0858, 0.019,]

]

Below this table is another table of experimental pKa values. Entries for new systems can be cre-

ated following the example already present for HEWL (the keys are residue numbers, the values
are their pKa values). As discussed above, this is optional and does not affect the constant pH

simulations − these data are used only by calcpka.pl and cpinutil.pl.

3/3/06

Using Sander Constant pH Page 174

Having added your titratable group definition to the table, you should be able to prepare a
cpin file as described above, run your simulation and calculate the predicted pKa using calcpka.pl.

Since the model compound is usually very small, runs of tens of nanoseconds are easily accessi-
ble for these tests. In general, the run to run variation of predicted pKa values is a few hundredths

of a pKa unit for long runs with pH near pKa. In most cases, the thermodynamic integration pro-

cedure described above yields acceptable results, but if your predicted pKa differs significantly

from the model pKa, you may want to adjust your relative energies, regenerate your cpin file and

rerun the test until you achieve good predictions.

6.12. NMR refinement using SANDER.
We find the sander module to be a flexible way of incorporating a variety of restraints into a

optimization procedure that includes energy minimization and dynamical simulated annealing.
The "standard" sorts of NMR restraints, derived from NOE and J-coupling data, can be entered in
a way very similar to that of programs like DISGEO, DIANA or X-PLOR; an aliasing syntax
allows for definitions of pseudo-atoms, connections with peak numbers in spectra, and the use of
"ambiguous" constraints from incompletely-assigned spectra. More "advanced" features include
the use of time-averaged constraints, use of multiple copies (LES) in conjunction with NMR
refinement, and direct refinement against NOESY intensities, paramagnetic and diamagnetic
chemical shifts, or residual dipolar couplings. In addition, a key strength of the program is its
ability to carry out the refinements (usually near the final stages) using an explicit-solvent repre-
sentation that incorporates force fields and simulation protocols that are known to give pretty
accurate results in many cases for unconstrained simulations; this ability should improve predic-
tions in regions of low constraint density and should help reduce the number of places where the
force field and the NMR constraints are in "competition" with one another.

Since there is no generally-accepted "recipe" for obtaining solution structures from NMR
data, the comments below are intended to provide a guide to some commonly-used procedures.
Generally speaking, the programs that need to be run to obtain NMR structures can be divided
into three parts:

(1) front-end modules, which interact with NMR databases that provide information about
assignments, chemical shifts, coupling constants, NOESY intensities, and so on. We hav e
tried to make the general format of the input straightforward enough so that it could be
interfaced to a variety of programs. At TSRI, we generally use the FELIX and NMRView
codes, but the principles should be similar for other ways of keeping track of a database
of NMR spectral information. As the flow-chart on the next page indicates, there are only
a few files that need to be created for NMR restraints; these are indicated by the solid
rectangles. The primary distance and torsion angle files have a fairly simple format that is
largely compatible with the DIANA programs; if one wishes to use information from
ambiguous or overlapped peaks, there is an additional "MAP" file that makes a translation
from peak identifiers to ambiguous (or partial) assignments. Finally, there are some spe-
cialized (but still pretty straightforward) file formats for chemical shift or residual dipolar
coupling restraints.

There are a variety of tools, besides the ones described below, that can assist in preparing
input for structure refinement in Amber. The SANE (Structure Assisted NOE Evaluation)
package,

3/3/06

Using Sander NMR refinement Page 175

http://garbanzo.scripps.edu/nmrgrp/wisdom/sane/sane.html

is widely used at The Scripps Research Institute [151]. If you use Bruce Johnson’s
NmrView package, you might also want to look at the TSRI additions to that:

http://garbanzo.scripps.edu/nmrgrp/wisdom/pipe/tips_scripts.html

In particular, the xpkTOupl and starTOupl scripts there convert NmrView peak lists into
the "7-column" needed for input to makeDIST_RST.

Users of the MARDIGRAS programs from UCSF can use the mardi2amber program to
do conversion to Amber format:

http://picasso.ucsf.edu/mardihome.html

(2) restrained molecular dynamics, which is at the heart of the conformational searching pro-
cedures. This is the part that sander itself handles.

(3) back-end routines that do things like compare families of structures, generate statistics,
simulate spectra, and the like. For many purposes, such as visualization, or the running of
procheck-NMR, the "interface" to such programs is just the set of pdb-format files that
contain the family of structures to be analyzed. These general-purpose structure analysis
programs are available in many locations and are not discussed here. The principal
sander-specific tool is sviol, which prepares tables and statistics of energies, restraint vio-
lations, and the like.

6.12.1. Distance, angle and torsional restraints.
Distance and angle restraints are read from the DISANG file if nmropt > 0. Namelist rst

("&rst") contains the following variables; it is read repeatedly until a namelist &rst statement
is found with IAT(1)=0, or until reaching the end of the DISANG file.

If you wish to include weight changes but have no internal constraints, set nmropt=1, but do
not include a DISANG line in the file redirection section. (Note that, unlike earlier versions of
Amber, the &rst namelists must be in the DISANG file, and not in the mdin file.)

In many cases, the user will not prepare this section of the input by hand, but will use the
auxiliary programs makeDIST_RST, makeANG_RST and makeCHIR_RST to prepare input from
simpler files.

Variables in the &rst namelist:

IAT(1)→IAT(4) If IRESID = 0 (normal operation):

The atoms defining the restraint. If IAT(3) ≤0, this is a distance
restraint. If IAT(4) ≤0, this is an angle restraint. Otherwise, this is a
torsional (or J-coupling, if desired) restraint.

If this is a distance restraint, and IAT1 <0, then a group of atoms is
defined below, and the coordinate-averaged position of this group
will be used in place of the coordinates of atom 1 [IAT(1)].

3/3/06

Using Sander NMR refinement Page 176

Similarly, if IAT(2) < 0, a group of atoms will be defined below
whose coordinate-averaged position will be used in place of the coor-
dinates for atom 2 [IAT(2)].

If IRESID=1:

IAT(1) → IAT(4) point to the numbers of the *residues* containing
the atoms comprising the internal. Residue numbers are the absolute
numbers in the entire system. In this case, the variables ATNAM(1)
→ ATNAM(4) must be specified, and give the character names of the
desired atoms within the respective residues.

If IAT(1) < 0 or IAT(2) < 0, then group input will still be read in
place of the corresponding atom, as described below.

Defaults for IAT(1)→IAT(4) are 0.

ATNAM If IRESID = 1, then the character names of the atoms defining the internal are
contained in ATNAM(1)→ATNAM(4). Residue IAT(1) is searched for atom
name ATNAM(1); residue IAT(2) is searched for atom name ATNAM(2); etc.
On machines using the portable namelist code, the form is
atnam(1)=’AT1’,atnam(2)=’AT2’ etc, otherwise the form atnam=’AT1’,’AT2’
etc can be used.

Defaults for ATNAM(1)→ATNAM(4) are ’ ’.

IRESID Indicates whether IAT(I) points to an atom # or a residue #. See descriptions
of IAT() and ATNAM() above.

Default = 0.

NSTEP1

NSTEP2 This restraint is applied for steps/iterations NSTEP1 through NSTEP2. If
NSTEP2 = 0, the restraint will be applied from NSTEP1 through the end of
the run. Note that the first step/iteration is considered step zero (0).

Defaults for NSTEP1, NSTEP2 are both 0.

IRSTYP Normally, the restraint target values defined below (R1→R4) are used
directly. If IRSTYP = 1, the values given for R1→R4 define relative displace-
ments from the current value (value determined from the starting coordinates)
of the restrained internal. For example, if IRSTYP=1, the current value of a
restrained distance is 1.25, and R1 (below) is -0.20, then a value of R1=1.05
will be used.

Default is IRSTYP=0.

IALTD Determines what happens when a distance restraint gets very large. If
IALTD=1, then the potential "flattens out", and there is no force for large vio-
lations; this allows for errors in constraint lists, but might tend to ignore con-
straints that should be included to pull a bad initial structure towards a more
correct one. When IALTD=0 the penalty energy continues to rise for large
violations. See below for the detailed functional forms that are used for dis-
tance restraints. Set IALTD=0 to recover the behavior of earlier versions of
sander. Default value is 0, or the last value that was explicitly set in a previ-
ous restraint. This value is set to 1 if makeDIST_RST is called with the -altdis
flag.

3/3/06

Using Sander NMR refinement Page 177

IFVARI If IFVARI > 0, then the force constants/positions of the restraint will vary
with step number. Otherwise, they are constant throughout the run. If IFVARI
>0, then the values R1A→R4A, RK2A, and RK3A must be specified (see
below).

Default is IFVARI=0.

NINC If IFVARI > and NINC > 0, then the change in the target values of of R1→R4
and K2,K3 is applied as a step function, with NINC steps/ iterations between
each change in the target values. If NINC = 0, the change is effected continu-
ously (at every step).

Default for NINC is the value assigned to NINC in the most recent namelist
where NINC was specified. If NINC has not been specified in any namelist, it
defaults to 0.

IMULT If IMULT=0, and the values of force constants RK2 and RK3 are changing
with step number, then the changes in the force constants will be linearly
interpolated from rk2→rk2a and rk3→rk3a as the step number changes.

If IMULT=1 and the force constants are changing with step number, then the
changes in the force constants will be effected by a series of multiplicative
scalings, using a single factor, R, for all scalings. i.e.

rk2a = R**INCREMENTS * rk2
rk3a = R**INCREMENTS * rk3.

INCREMENTS is the number of times the target value changes, which is
determined by NSTEP1, NSTEP2, and NINC.

Default for IMULT is the value assigned to IMULT in the most recent
namelist where IMULT was specified. If IMULT has not been specified in any
namelist, it defaults to 0.

R1→R4

RK2,RK3

R1A→R4A

RK2A,RK3A If IALTD=0, the restraint is a well with a square bottom with parabolic sides
out to a defined distance, and then linear sides beyond that. Force constants
are in units of kcal/mol. If R is the value of the restraint in question:

R < r1 Linear, with the slope of the "left-hand" parabola at the point R=r1.

r1 <= R < r2 Parabolic, with restraint energy k2(R − r2)2.

r2 <= R < r3 E = 0.

r3 <= R < r4 Parabolic, with restraint energy k3(R − r3)2.

r4 <= R Linear, with the slope of the "right-hand" parabola at the point
R=r4.

For torsional restraints, the value of the torsion is translated by +-n*360, if
necessary, so that it falls closest to the mean of r2 and r3.

Specified distances are in Angstroms. Specified angles are in degrees. Force
constants for distances are in kcal/mol-Å2 Force constants for angles are in
kcal/mol-rad2. (Note that angle positions are specified in degrees, but force
constants are in radians, consistent with typical reporting procedures in the

3/3/06

Using Sander NMR refinement Page 178

literature).

If IALTD=1, distance restraints are interpreted in a slightly different fashion.
Again, If R is the value of the restraint in question:

R < r2 Parabolic, with restraint energy k2(R − r2)2.

r2 <= R < r3 E = 0.

r3 <= R < r4 Parabolic, with restraint energy k3(R − r3)2.

r4 <= R Hyperbolic, with energy k3[b/(R − r3) + a], where a = 3(r4 − r3)2

and b = − 2(r4 − r3)3. This function matches smoothly to the
parabola at R = r3, and tends to an asymptote of ak3 are large R.
The functional form is adapted from that suggested by Michael
Nilges, Prot. Eng. 2, 27-38 (1988). Note that if ialtd=1, the value
of r1 is ignored.

IFVARI = 0 The values of r1→r4, rk2, and rk3 will remain constant
throughout the run.

IFVARI > 0 The values r1a, r2a, r3a, r4a, r2ka and r3ka are also used.
These variables are defined as for r1→r4 and rk2, rk3, but
correspond to the values appropriate for NSTEP =
NSTEP2: e.g., if IVARI >0, then the value of r1 will vary
between NSTEP1 and NSTEP2, so that, e.g. r1(NSTEP1)
= r1 and r1(NSTEP2) = r1a. Note that you must specify an
explicit value for nstep1 and nstep2 if you use this option.

Defaults for r1→r4,rk2,rk3,r1a→r4a,rk2a and rk3a are the values assigned
to them in the most recent namelist where they were specified. They should
always be specified in the first &rst namelist.

(IGR1(i),i=1→200)
If IAT(1) < 0 and IAT(3)=IAT(4)=0, then IGR1() gives the atoms defining the
group whose coordinate averaged position is used to define "atom 1" in a dis-
tance restraint. If IRESID = 0, absolute atom numbers are specified by the
elements of IGR1(). If IRESID = 1, then IGR1(I) specifies the number of the
residue containing atom I, and the name of atom I must be specified using
GRNAM1(I). A maximum of 200 atoms are allowed in any group. Only
specify those atoms which are needed.

RJCOEF(1)→RJCOEF(3)
By default, 4-atom sequences specify torsional restraints. It is also possible to
impose restraints on the vicinal 3J-coupling value related to the underlying
torsion. J is related to the torsion τ by the approximate Karplus relationship:
J = A cos2(τ) + B cos(τ) + C. If you specify a non-zero value for either
RJCOEF(1) or RJCOEF(2), then a J-coupling restraint, rather than a torsional
restraint, will be imposed. At every MD step, J will be calculated from the
Karplus relationship with A = RJCOEF(1), B = RJCOEF(2) and C =
RJCOEF(3). In this case, the target values (R1->R4, R1A->R4A) and force
constants (RK2, RK3, RK2A, RK3A) refer to J-values for this restraint.
RJCOEF(1)->RJCOEF(3) must be set individually for each torsion for which
you wish to apply a J-coupling restraint, and RJCOEF(1)->RJCOEF(3) may
be different for each J-coupling restraint.

3/3/06

Using Sander NMR refinement Page 179

With respect to other options and reporting, J-coupling restraints are treated
identically to torsional restraints. This means that if time-averaging is
requested for torsional restraints, it will apply to J-coupling restraints as well.
The J-coupling restraint contribution to the energy is included in the "tor-
sional" total. And changes in the relative weights of the torsional force con-
stants also change the relative weights of the J-coupling restraint terms.

Setting RJCOEF has no effect for distance and angle restraints.

Defaults for RJCOEF(1)->RJCOEF(3) are 0.0.

(IGR2(i),i=1→200)
If IAT(2) < 0 and IAT(3)=IAT(4)=0, then IGR1 gives the atoms defining the
group whose coordinate averaged position is used to define "atom 2" in a dis-
tance restraint. If IRESID = 0, absolute atom numbers are specified by the
elements of IGR2(). If IRESID = 1, then IGR2(I) specifies the number of the
residue containing atom I, and the name of atom I must be specified using
GRNAM1(I). A maximum of 200 atoms are allowed in any group. Only
specify those atoms which are needed.

Default value for any unspecified element of IGR1 or IGR2 is 0.

(GRNAM1(i),i=1→200)

(GRNAM2(i),i=1→200)
If group input is being specified (IAT(1) or IAT(2) < 0 and IAT(3)=IAT(4)=0),
and IRESID = 1, then the character names of the atoms defining the group are
contained in GRNAM1(i) or GRNAM2(i)), as described above. In the case
IAT(1) < 0, each residue IGR1(i) is searched for an atom name GRNAM1(i)
and added to the first group list. In the case IAT(2) < 0, each residue IGR2(i)
is searched for an atom name GRNAM2(i) and added to the second group list.

Defaults for GRNAM1(i) and GRNAM2(i) are ’ ’.

IR6 If a group coordinate-averaged position is being used (see IGR1 and IGR2
above), the average position can be calculated in either of two manners: If IR6
= 0, center-of-mass averaging will be used. If IR6=1, the < r−6 >−1/6 av erage
of all interaction distances to atoms of the group will be used.

Default for IR6 is the value assigned to IR6 in the most recent namelist where
IR6 was specified. If IR6 has not been specified in any namelist, it defaults to
0.

IFNTYP If time-averaged restraints have been requested (see DIS-
AVE/ANGAVE/TORAVE above), they are, by default, applied to all restraints
of the class specified. Time-averaging can be overridden for specific internals
of that class by setting IFNTYP for that internal to 1. IFNTYP has no effect if
time-averaged restraint are not being used.

Default value is IFNTYP=0.

IXPK

NXPK These are user-defined integers than can be set for each constraint. They are
typically the "peak number" and "spectrum number" associated with the
cross-peak that led to this particular distance restraint. Nothing is ever done
with them except to print them out in the "violation summaries", so that NMR
people can more easily go from a constraint violation to the corresponding

3/3/06

Using Sander NMR refinement Page 180

peak in their spectral database. Default values are zero.

ICONSTR If iconstr > 0, (default is 0) a Lagrangian multiplier is also applied to the two-
center internal coordinate defined by IAT(1) and IAT(2). The effect of this
Lagrangian multiplier is to maintain the initial orientation of the internal coor-
dinate. The rotation of the vector IAT(1)->IAT(2) is prohibited, though trans-
lation is allowed. For each defined two-center internal coordinate, a separate
Lagrangian multiplier is used. Therefore, although one can use as many multi-
pliers as needed, defining centers should NOT appear in more than one multi-
plier. This option is compatible with mass centers (i.e., negative IAT(1) or
IAT(2)). ICONSTR can be used together with harmonic restraints. RK2 and
RK3 should be set to 0.0 if the two-center internal coordinate is a simple
Lagrangian multiplier. An example has been included in $AMBER-
HOME/example/lagmul.

Namelist &rst is read for each restraint. Restraint input ends when a namelist statement with
iat(1) = 0 (or iat(1) not specified) is found. Note that comments can precede or follow any
namelist statement, allowing comments and restraint definitions to be freely mixed.

6.12.2. NOESY volume restraints.
After the previous section, NOESY volume restraints may be read. This data described in

this section is only read if NMROPT = 2. The molecule may be broken in overlapping sub-
molecules, in order to reduce time and space requirements. Input for each submolecule consists
of namelist "&noeexp", followed immediately by standard Amber "group" cards defining the
atoms in the submolecule. In addition to the submolecule input ("&noeexp"), you may also
need to specify some additional variables in the cntrl namelist; see the "NMR variables"
description in that section.

In many cases, the user will not prepare this section of the input by hand, but will use the
auxiliary program makeDIST_RST to prepare input from simpler files.

Variables in the &noeexp namelist:

For each submolecule, the namelist "&noeexp" is read (either from stdin or from the NOESY
redirection file) which contains the following variables. There are no effective defaults for npeak,
emix, ihp, jhp, and aexp: you must specify these.

NPEAK(imix) Number of peaks for each of the "imix" mixing times; if the last mixing time
is mxmix, set NPEAK(mxmix+1) = -1. End the input when NPEAK(1) < 0.

EMIX(imix) Mixing times (in seconds) for each mixing time.

IHP(imix,ipeak)

JHP(imix,ipeak) Atom numbers for the atoms involved in cross-peak "ipeak" at mixing time
"imix"

AEXP(imix,ipeak) Experimental target integrated intensity for this cross peak. If AEXP is neg-
ative, this cross peak is part of a set of overlapped peaks. The computed
intensity is added to the peak that follows; the next time a peak with AEXP >
0 is encountered, the running sum for the calculated peaks will be compared
to the value of AEXP for that last peak in the list. In other words, a set of

3/3/06

Using Sander NMR refinement Page 181

overlapped peaks is represented by one or more peaks with AEXP < 0 fol-
lowed by a peak with AEXP > 0. The computed total intensity for these
peaks will be compared to the value of AEXP for the final peak.

ARANGE(imix,ipeak)
"Uncertainty" range for this peak: if the calculated value is within ±ARANGE
of AEXP, then no penalty will be assessed. Default uncertainties are all zero.

AWT(imix,ipeak) Relative weight for this cross peak. Note that this will be multiplied by the
overall weight given by the NOESY weight change cards in the weight
changes section (Section 1). Default values are 1.0, unless
INVWT1,INVWT2 are set (see below), in which case the input values of
AWT are ignored.

INVWT1,INVWT2
Lower and upper bounds on the weights for the peaks respectively, such that
the relative weight for each peak is 1/intensity if 1/intensity lies between the
lower and upper bounds. This is the intensity after being scaled by oscale.
The inverse weighing scheme adopted by this option prevents placing too
much influence on the strong peaks at the expense of weaker peaks and was
previously invoked using the compilation flag "INVWGT". Default values are
INVWT1=INVWT2=1.0, placing equal weights on all peaks.

OMEGA Spectrometer frequency, in Mhz. Default is 500. It is possible for different
sub-molecules to have different frequencies, but omega will only change
when it is explicitly re-set. Hence, if all of your data is at 600 Mhz, you need
only set omega to 600. in the first submolecule.

TA UROT Rotational tumbling time of the molecule, in nsec. Default is 1.0 nsec. Like
omega, this value is "sticky", so that a value set in one submolecule will
remain until it is explicitly reset.

TA UMET Correlation time for methyl jump motion, in ns. This is only used in comput-
ing the intra-methyl contribution to the rate matrix. The ideas of Woessner
are used, specifically as recommended by Kalk & Berendsen [152]. Default is
0.0001 ns, which is effectively the fast motion limit. The default is consistent
with the way the rest of the rate matrix elements are determined (also in the
fast motion limit,) but probably is not the best value to use, since methyl
groups appear to have T1 values that are systematically shorter than other pro-
tons, and this is likely to arise from the fact that the methyl correlation time
can be near to the inverse of the spectrometer frequency. A value of 0.02 -
0.05 ns is probably better than 0.0001, but this is still an active research area,
and you are on your own here, and should consult the literature for further dis-
cussion [153]. As with omega, taumet can be different for different sub-
molecules, but will only change when it is explicitly re-set.

ID2O Flag for determining if exchangeable protons are to be included in the spin-
diffusion calculation. If ID2O=0 (default) then all protons are included. If
ID2O=1, then all protons bonded to nitrogen or oxygen are assumed to not be
present for the purposes of computing the relaxation matrix. No other options
exist at present, but they could easily be added to the subroutine indexn.
Alternatively, you can manually rename hydrogens in the prmtop file so that
they do not begin with "H": such protons will not be included in the relaxation
matrix. (Note: for technical reasons, the HOH proton of tyrosine must

3/3/06

Using Sander NMR refinement Page 182

always be present, so setting ID2O=1 will not remove it; we hope that this
limitation will be of minor importance to most users.) The id2o variable
retains its value across namelist reads, i.e. its value will only change if it is
explicitly reset.

OSCALE overall scaling factor between experimental and computed volume units. The
experimental intensities are multiplied by oscale before being compared to
calculated intensities. This means that the weights WNOESY and AWT
always refer to "theoretical" intensity scales rather than to the (arbitrary)
experimental units. The oscale variable retains its value across namelist
reads, i.e. its value will only change if it is explicitly reset. The initial
(default) value is 1.0.

The atom numbers ihp and jhp are the absolute atom numbers. For methyl groups, use the
number of the last proton of the group; for the delta and epsilon protons of aromatic rings, use the
delta-2 or epsilon-2 atom numbers. Since this input requires you to know the absolute atom num-
bers assigned by Amber to each of the protons, you may wish to use the separate makeDIST_RST
program which provides a facility for more turning human-readable input into the required file for
sander.

Following the &noeexp namelist, give the Amber "group" cards that identify this sub-
molecule. This combination of "&noeexp" and "group" cards can be repeated as often as needed
for many submolecules, subject to the limits described in the nmr.h file. As mentioned above, this
input section ends when NPEAK(1) < 0, or when and end-of-file is reached.

6.12.3. Chemical shift restraints.
After reading NOESY restraints above (if any), read the chemical shift restraints in namelist

&shf, or the pseudocontact restraints in namelist &pcshift. Reading this input is triggered by the
presence of a SHIFTS or PCSHIFT line in the I/O redirection section. In many cases, the user
will not prepare this section of the input by hand, but will use the auxiliary programs makeSHF or
fantasian to prepare input from simpler files.

Variables in the &shf namelist. (Defaults are only available for shrang, wt, nter, and shcut;
you must specify the rest.)

NRING Number of rings in the system.

NATR(i) Number of atoms in the i-th ring.

IATR(j,i) Absolute atom number for the j-th atom of the i-th ring.

NAMR(i) Eight-character string that labels the i-th ring. The first three characters give
the residue name (in caps); the next three characters contain the residue num-
ber (right justified); column 7 is blank; column 8 may optionally contain an
extra letter to distinguish the two rings of trp, or the 5 or 8 rings of the heme
group.

STR(i) Ring current intensity factor for the i-th ring. Older values are summarized by
Cross and Wright [154]; more recent empirical parametrizations seem to give
improved results [155,156].

3/3/06

Using Sander NMR refinement Page 183

NPROT Number of protons for which penalty functions are to be set up.

IPROT(i) Absolute atom number of the i-th proton whose shifts are to be evaluated. For
equivalent protons, such as methyl groups or rapidly flipping phenylalanine
rings, enter all two or three atom numbers in sequence; averaging will be con-
trolled by the wt parameter, described below.

OBS(i) Observed secondary shift for the i-th proton. This is typically calculated as
the observed value minus a random coil reference value.

SHRANG(i) "Uncertainty" range for the observed shift: if the calculated shift is within
±SHRANG of the observed shift, then no penalty will be imposed. The
default value is zero for all shifts.

WT(i) Weight to be assigned to this penalty function. Note that this value will be
multiplied by the overall weight (if any) given by the SHIFTS command in
the assignment of weights (above). Default values are 1.0. For sets of equiv-
alent protons, give a neg ative weight for all but the last proton in the group;
the last proton gets a normal, positive value. The av erage computed shift of
the group will be compared to obs entered for the last proton.

SHCUT Values of calculated shifts will be printed only if the absolute error between
calculated and observed shifts is greater than this value. Default = 0.3 ppm.

NTER Residue number of the N-terminus, for protein shift calculations; default = 1.

CTER Residue number of the C-terminus, for protein shift calculations. Believe it or
not, the current code cannot figure this out for itself.

The PCSHIFT module allows the inclusion of pseudocontact shifts as constraints in energy
minimization and molecular dynamics calculations on paramagnetic molecules. The pseudocon-
tact shift depends on the magnetic susceptibility anisotropy of the metal ion and on the location of
the resonating nucleus with respect to the axes of the magnetic susceptibility tensor. For the
nucleus i, it is given by:

(6.34)δ i
pc =

j
Σ 1

12π r3
ij

⎡
⎣
∆χ j

ax(3n2
ij −1) + (3 /2)∆χ j

rh(l2
ij − m2

ij)
⎤
⎦

where lij , mij , and nij are the direction cosines of the position vector of atom i with respect to the
j-th magnetic susceptibility tensor coordinate system, rij is the distance between the j-th paramag-
netic center and the proton i, jax and jrh are the axial and the equatorial anisotropies of the mag-
netic susceptibility tensor of the j-th paramagnetic center. For a discussion, see Ref. [157].

The PCSHIFT module to be used needs a namelist file which includes information on the
magnetic susceptibility tensor and on the paramagnetic center, and a line of information for each
nucleus. This module allows to include more than one paramagnetic center in the calculations. To
include pseudocontact shifts as constraints in energy minimization and molecular dynamics cal-
culations the NMROPT flag should be set to 2, and a PCSHIFT=filename statement entered in the
I/O redirection section.

To perform molecular dynamics calculations it is necessary to eliminate the rotational and
translational degree of freedom about the center of mass (this because during molecular dynamics

3/3/06

Using Sander NMR refinement Page 184

calculations the relative orientation between the external reference coordinate system and the
magnetic anisotropy tensor coordinate system has to be fixed).This option can be obtained with
the NSCM flag of sander.

Variables in the pcshift namelist.

NPROT number of pseudocontact shift constraints.

NME number of paramagnetic centers.

NMPMC name of the paramagnetic atom

OPTPHI(n)

OPTTET(n)

OPTOMG(n)

OPTA1(n)

OPTA2(n) the five parameters of the magnetic anisotropy tensor for each paramagnetic
center.

OPTKON force constant for the pseudocontact shift constraints

Following this, there is a line for each nucleus for which the pseudocontact shift information
is given has to be added. Each line contains :

IPROT(i) atom number of the i-th proton whose shift is to be used as constraint.

OBS(i) observed pseudocontact shift value, in ppm

WT(i) relative weight

TOLPRO(i) relative tolerance ix mltpro

MLTPRO(i) multiplicity of the NMR signal (for example the protons of a methyl group
have mltprot(i)=3)

Example. Here is a &pcshf namelist example: a molecule with three paramagnetic centers and
205 pseudocontact shift constraints.

&pcshf

nprot=205,

nme=3,

nmpcm=’FE ’,

optphi(1)=-0.315416,

opttet(1)=0.407499,

optomg(1)=0.0251676,

opta1(1)=-71.233,

opta2(1)=1214.511,

optphi(2)=0.567127,

opttet(2)=-0.750526,

optomg(2)=0.355576,

opta1(2)=-60.390,

opta2(2)=377.459,

optphi(3)=0.451203,

opttet(3)=-0.0113097,

optomg(3)=0.334824,

3/3/06

Using Sander NMR refinement Page 185

opta1(3)=-8.657,

opta2(3)=704.786,

optkon=30,

iprot(1)=26, obs(1)=1.140, wt(1)=1.000, tolpro(1)=1.00, mltpro(1)=1,

iprot(2)=28, obs(2)=2.740, wt(2)=1.000, tolpro(2)=.500, mltpro(2)=1,

iprot(3)=30, obs(3)=1.170, wt(3)=1.000, tolpro(3)=.500, mltpro(3)=1,

iprot(4)=32, obs(4)=1.060, wt(4)=1.000, tolpro(4)=.500, mltpro(4)=3,

iprot(5)=33, obs(5)=1.060, wt(5)=1.000, tolpro(5)=.500, mltpro(5)=3,

iprot(6)=34, obs(6)=1.060, wt(6)=1.000, tolpro(6)=.500, mltpro(6)=3,

...

...

iprot(205)=1215, obs(205)=.730, wt(205)=1.000, tolpro(205)=.500,

mltpro(205)=1,

/

An mdin file that might go along with this, to perform a maximum of 5000 minimization cycles,
starting with 500 cycles of steepest descent. PCSHIFT=./pcs.in redirects the input from the
namelist "pcs.in" which contains the pseudocontact shift information.

Example of minimization including pseudocontact shift constraints

&cntrl

ibelly=0,imin=1,ntpr=100,

ntwx=100,ntwe=100,ioutfm=0,ntr=0,maxcyc=500,

ncyc=50,ntmin=1,dx0=0.0001,

drms=.1,cut=10.,scee=2.0,

nmropt=2,pencut=0.1, ipnlty=2,

/

&wt type=’REST’, istep1=0,istep2=1,value1=0.,

value2=1.0, /

&wt type=’END’ /

DISANG=./noe.in

PCSHIFT=./pcs.in

LISTOUT=POUT

6.12.4. Direct dipolar coupling restraints
Energy restraints based on direct dipolar coupling constants are entered in this section. All

variables are in the namelist &align; reading of this section is triggered by the presence of a
DIPOLE line in the I/O redirection section.

When dipolar coupling restraints are turned on, the five unique elements of the alignment
tensor are treated as additional variables, and are optimized along with the structural parameters.
Their effective masses are determined by the scalm parameter entered in the &cntrl namelist.
Unlike some other programs, the variables used are the Cartesian components of the alignment
tensor in the axis system defined by the molecule itself: e.g.
Smn ≡ 105 < (3 cosθ m cosθ n − δ mn)/2 >, where θ x is the angle between the x axis and the spec-
trometer field [158]. The factor of 105 is just to make the values commensurate with atomic coor-
dinates, since both the coordinates and the alignment tensor values will be updated during the

3/3/06

Using Sander NMR refinement Page 186

refinement. The calculated dipolar splitting is then

(6.35)Dcalc = −
⎛
⎜
⎝

10−5γ iγ j h

2π 2r3
ij

⎞
⎟
⎠ m,n=x,y,z

Σ cos φ m ⋅ Smn ⋅ cos φ n

where φ x is the angle between the internuclear vector and the x axis. Geometrically, the splitting
is proportional to the transformation of the alignment tensor onto the internuclear axis. This is
just Eqs. (5) and (13) of the above reference, with any internal motion corrections (which might
be a part of Ssystem) set to unity. If there is an internal motion correction which is the same for all
observations, this can be assimilated into the alignment tensor. The current code does not allow
for variable corrections for internal motion, but this is coming. See ref. [159] for a fuller discus-
sion of these issues.

At the end of the calculation, the alignment tensor is diagonalized to obtain information
about its principal components. This allows the alignment tensor to be written in terms of the
"axial" and "rhombic" components that are often used to describe alignment.

Variables in the &align namelist.

NDIP Number of observed dipolar coupling restraints to be used as restraints.

ID,JD Atom numbers of the two atoms involved in the dipolar coupling.

DOBSL, DOBSU Limiting values for the observed dipolar splitting, in Hz. If the calculated
coupling is less than dobsl, the energy penalty is proportional to
(Dcalc − Dobs,l)

2; if it is larger than dobsu, the penalty is proportional to
(Dcalc − Dobs,u)2. Calculated values between dobsl and dobsu are not penal-
ized. Note that dobsl must be less than dobsu; for example, if the observed
coupling is -6 Hz, and a 1 Hz "buffer" is desired, you could set dobsl to -7 and
dobsu to -5.

DWT The relative weight of each observed value. Default is 1.0. The penalty func-
tion is thus:

(6.36)Ei
align = Di

wt(Di
calc − Di

obs(u,l))
2

where Dwt may vary from one observed value to the next. Note that the
default value is arbitrary, and a smaller value may be required to avoid overfit-
ting the dipolar coupling data [159].

DATASET Each dipolar peak can be associated with a "dataset", and a separate alignment
tensor will be computed for each dataset. This is generally used if there are
several sets of experiments, each with a different sample or temperature, etc.,
that would imply a different value for the alignment tensor. By default, there
is one dataset to which each observed value is assigned.

NUM_DAT ASETS The number of datasets in the constraint list. Default is 1.

S11,S12,S13,S22,S23
Initial values for the Cartesian components of the alignment tensor. The ten-
sor is traceless, so S33 is calculated as −(S11+S22). In order to have the order
of magnitude of the S values be roughly commensurate with coordinates in
Angstroms, the alignment tensor values must be multiplied by 105.

GIGJ Product of the nuclear "g" factors for this dipolar coupling restraint. These
are related to the nuclear gyromagnetic rations by γ N = gN β N /h. Common
values are 1H = 5.5856, 13C = 1.4048, 15N = -0.5663, 31P = 2.2632.

3/3/06

Using Sander NMR refinement Page 187

DIJ The internuclear distance for observed dipolar coupling. If a non-zero value
is given, the distance is considered to be fixed at the given value. If a dij value
is zero, its value is computed from the structure, and it is assumed to be a vari-
able distance. For one-bond couplings, it is usually best to treat the bond dis-
tance as "fixed" to an effective zero-point vibration value [160].

DCUT Controls printing of calculated and observed dipolar couplings. Only values
where abs(dobs(u,l) - dexp) is greater than dcut will be printed. Default is 0.1
Hz. Set to a negative value to print all dipolar restraint information.

FREEZEMOL If this is set to .true., the molecular coordinates are not allowed to vary during
dynamics or minimization: only the elements of the alignment tensor will
change. This is useful to fit just an alignment tensor to a given structure.
Default is .false..

6.12.5. Preparing restraint files for Sander
Figure 1 shows the general information flow for auxiliary programs that help prepare the

restraint files. Once the restraint files are made, Figure 2 shows a flow-chart of the general way in
which sander refinements are carried out.

The basic ideas of this scheme owe a lot to the general experience of the NMR community
over the past decade. Several papers outline procedures in the Scripps group, from which a lot of
the NMR parts of sander are derived [151,161-166]. They are by no means the only way to pro-
ceed. We hope that the flexibility incorporated into sander will encourage folks to experiment
with refinement protocols.

6.12.6. Preparing distance restraints: makeDIST_RST.
The makeDIST_RST program converts a simplified description of distance bounds into a

detailed input for sander. A variety of input and output filenames may be specified on the com-
mand line:

input:

-upb <filename> 7-col file of upper distance bounds, OR

-ual <filename> 8-col file of upper and lower bounds, OR

-vol <filename> 7-col file of NOESY volumes

-pdb <filename> Brookhaven format file

-map <filename> MAP file (default:map.DG-AMBER)

-les <filename> LES atom mappings, made by addles

output:

-dgm <filename> DGEOM95 restraint format

-rst <filename> SANDER restraint format

-svf <filename> Sander Volume Format, for NOESY refinement

other options:

-help (gives you this explanation, overrides other parameters)

-report (gives you short runtime diagnostic output)

-nocorr (do not correct upper bound for r**-6 averaging)

3/3/06

Using Sander NMR refinement Page 188

NOESY

peak-list

various

calibrations

7/8 column

distance

bounds

makeDIST_RST distance

restraints

makeDIST_RST volume

restraints

chemical

shift

restraints

chemical

shifts

analyze

ambiguities

MAP

file

default

MAP file

SHIFTS or

FANTASIAN

spectr um

5 column

coupling

constants

makeANG_RST J-coupling

restraints

DISANG

file

default

chirality

infor m.

makeCHIR_RST chirality

restraints

direct

dipolar

couplings

makeDIP_RST alignment

restraints

Fig. 1. Notation: circles represent logical information, whose format might differ from one project
to the next; solid rectangles are in a specific format (largely compatible with DIANA and other
programs), and are intended to be read and edited by the user; ellipses are specific to sander, and
are generally not intended to be read or edited manually. The conversion of NOESY volumes to
distance bounds can be carried out by a variety of programs such as mardigras or xpk2bound that
are not included with Amber. Similarly, the analysis and partial assignment of ambiguous or
overlapped peaks is a separate task; at TSRI, these are typically carried out using the programs
xpkasgn and filter.pl.

3/3/06

Using Sander NMR refinement Page 189

gener ic
PDB-file

protonate Amber
PDB-file

LEaP
pr mtop &
pr mcrd

files

sander
control

file
SANDER

NMR
restraints

sander
output

sviolviolation
statistics

Amber
coordinates

ambpdb output
pdb-files

Fig. 2

-altdis (use alternative form for the distance restraints)

The 7/8 column distance bound file is essentially that used by the DIANA or DISGEO pro-
grams. It consists of one-line per restraint, which would typically look like the following:

23 ALA HA 52 VAL H 3.8 # comments go here

The first three columns identify the first proton, the next three the second proton, and the seventh
column gives the upper bound. Only the first three letters of the residue name are used, so that
DIANA files that contain residues like "ASP−" will be correctly interpreted. An alternate, 8-col-
umn, format has both upper and lower bounds as the seventh and eighth columns, respectively. A
typical line might in an "8-col" file might look like this:

23 ALA HA 52 VAL H 3.2 3.8 # comments go here

Here the lower bound is 3.2 Å and the upper bound is 3.8 Å. Comments typically identify the
spectrum and peak-number or other identification that allow cross-referencing back to the appro-
priate spectrum. If the comment contains the pattern "<integer>:<integer>", then the first integer
is treated as a peak-identifier, and the second as a spectrum-identifier. These identifiers go into
the ixpk and nxpk variables, and will later be printed out in sander, to facilitate going back to the
original spectra to track down violations, etc.

3/3/06

Using Sander NMR refinement Page 190

The format for the -vol option is the same as for the -upb option except that the seventh col-
umn holds a peak intensity (volume) value, rather than a distance upper bound.

The input pdb file must exactly match the Amber prmtop file that will be used; use the
ambpdb -aatm command to create this.

If all peaks involved just single protons, and were fully assigned, this is all that one would
need. In general, though, some peaks (especially methyl groups or fast-rotating aromatic rings)
represent contributions from more than one proton, and many other peaks may not be fully
assigned. Sander handles both of these situations in the same way, through the notion of an
"ambiguous" peak, that may correspond to several assignments. These peaks are given two types
of special names in the 7/8-column format file:

(1) Commonly-occurring ambiguities, like the lack of stereospecific assignments to two
methylene protons, are given names defined in the default MAP file. These names, also
more-or-less consistent with DIANA, are like the names of "pseudo-atoms" that have long
been used to identify such partially assigned peaks, e.g. "QB" refers to the (HB2,HB3)
combination in most residues, and "MG1" in valine refers collectively to the three methyl
protons at position CG1, etc.

(2) There are generally also molecule-specific ambiguities, arising from potential overlap in a
NOESY spectrum. Here, the user assigns a unique name to each such ambiguity or over-
lap, and prepares a list of the potential assignments. The names are arbitrary, but might
be constructed, for example, from the chemical shifts that identify the peak, e.g. "p_2.52"
might identify the set of protons that could contribute to a peak at 2.52 ppm. The chemi-
cal shift list can be used to prepare a list of potential assignments, and these lists can often
be pruned by comparison to approximate or initial structures.

The default and molecule-specific MAP files are combined into a single file, which is used, along
with the 7-column restraint file, the the program makeDIST_RST to construct the actual sander
input files. You should consult the help file for makeDIST_RST for more information. For
example, here are some lines added to the MAP file for a recent TSRI refinement:

AMBIG n2:68 = HE 86 HZ 86

AMBIG n2:72 = HE 24 HD 24 HZ 24

AMBIG n2:73 = HN 81 HZ 13 HE 13 HD 13 HZ 24

AMBIG n2:78 = HN 76 HZ 13 HE 13 HZ 24

AMBIG n2:83 = HN 96 HN 97 HD 97 HD 91

AMBIG n2:86 = HD1 66 HZ2 66

AMBIG n2:87 = HN 71 HH2 66 HZ3 66 HD1 66

Here the spectrum name and peak number were used to construct a label for each ambiguous
peak. Then, an entry in the restraint file might look like this:

123 GLY HN 0 AMB n2:68 5.5

indicating a 5.5 Å upper bound between the amide proton of Gly 123 and a second proton, which
might be either the HE or HZ protons of residue 86. (The "zero" residue number just serves as a
placeholder, so that there will be the same number of columns as for non-ambiguous restraints.)
If it is possible that the ambiguous list might not be exhaustive (e.g. if some protons have not
been assigned), it is safest to set ialtd=1, which will allow "mistakes" to be present in the con-
straint list. On the other hand, if you want to be sure that every violation is "active", set ialtd=0.

3/3/06

Using Sander NMR refinement Page 191

If the -les flag is set, the program will prepare distance restraints for multiple copies (LES)
simulations. In this case, the input pdb file is one without LES copies, i.e. with just a single copy
of the molecule. The "lesfile" specified by this flag is created by the addles program, and con-
tains a mapping from original atom numbers into the copy numbers used in the multiple-copies
simulation.

The -rst and -svf flags specify outputs for sander, for distance restraints and NOESY
restraints, respectively. In each case, you may need to hand-edit the outputs to add additional
parameters. You should make it a habit to compare the outputs with the descriptions given earlier
in this chapter to make sure that the restraints are what you want them to be.

It is common to run makeDIST_RST several times, with different inputs that correspond to
different spectra, different mixing times, etc. It is then expected that you will manually edit the
various ouptut files to combine them into the single file required by sander.

6.12.7. Preparing torsion angle restraints: makeANG_RST
There are fewer "standards" for representing coupling constant information. We hav e fol-

lowed the DIANA convention in the program makeANG_RST. This program takes as input a five-
column torsion angle constraint file along with an Amber pdb file of the molecule. It creates as
output (to standard out) a list of constraints in RST format that is readable by Amber.

Usage: makeANG_RST -help

makeANG_RST -pdb ambpdb_file [-con constraint] [-lib libfile]

[-les lesfile]

The input torsion angle constraint file can be read from standard in or from a file specified
by the -con option on the command line. The input constraint file should look something like
this:

1 GUA PPA 111.5 144.0

2 CYT EPSILN 20.9 100.0

2 CYT PPA 115.9 134.2

3 THY ALPHA 20.4 35.6

4 ADE GAMMA 54.7 78.8

5 GLY PHI 30.5 60.3

6 ALA CHI 20.0 50.0

....

Lines beginning with "#" are ignored. The first column is the residue number; the second is the
residue name (three letter code, or as defined in your personal torsion library file). Only the first
three letters of the residue name are used, so that DIANA files that contain residues like "ASP-"
will be correctly interpreted. Third is the angle name (taken from the torsion library described
below).The fourth column contains the lower bound, and the fifth column specifies the upper
bound. Additional material on the line is (presently) ignored.

Note: It is assumed that the lower bound and the upper bound define a region of allowed
conformation on the unit circle that is swept out in a clockwise direction from lb → ub. If the
number in the lb column is greater than the the number in the ub column, 360o will successively
be subtracted from the lb until lb < ub. This preserves the clockwise definition of the allowed
conformation space, while also making the number that specifies the lower bound less than the

3/3/06

Using Sander NMR refinement Page 192

number that specifies the upper bound, as is required by Amber. If this occurs, a warning mes-
sage will be printed to stderr to notify the user that the data has been modified.

The angles that one can constrain in this manner are defined in the library file that can be
optionally specified on the command line with the -lib flag, or the default library "tordef.lib"
(written by Garry P. Gippert) will be used. If you wish to specify your own nomenclature, or add
angles that are not already defined in the default file, you should make a copy of this file and
modify it to suit your needs. The general format for an entry in the library is:

LEU PSI N CA C N+

where the first column is the residue name, the second column is the angle name that will appear
in the input file when specifying this angle, and the last four columns are the atom names that
define the torsion angle. When a torsion angle contains atom(s) from a preceding or succeeding
residue in the structure, a "-" or "+" is appended to those atom names in the library, thereby speci-
fying that this is the case. In the example above, the atoms that define PSI for LEU residues are
the N, CA, and C atoms of that same LEU and the N atom of the residue after that LEU in the pri-
mary structure. Note that the order of atoms in the definition is important and should reflect that
the torsion angle rotates about the two central atoms as well as the fact that the four atoms are
bonded in the order that is specified in the definition.

If the first letter of the second field is "J", this torsion is assumed to be a J-coupling con-
straint. In that case, three additional floats are read at the end of the line, giving the A,B and C
coefficients for the Karplus relation for this torsion. For example:

ALA JHNA H N CA HA 9.5 -1.4 0.3

will set up a J-coupling restraint for the HN-HA 3-bond coupling, assuming a Karplus relation
with A,B, C as 9.5, -1.4 and 0.3. (These particular values are from Brüschweiler and Case, JACS
116: 11199 (1994).)

This program also supports pseudorotation phase angle constraints for prolines and nucleic
acid sugars; each of these will generate restraints for the 5 component angles which correspond to
the lb and ub values of the input pseudorotation constraint. In the torsion library, a pseudorota-
tion definition looks like:

PSEUDO CYT PPA NU0 NU1 NU2 NU3 NU4

CYT NU0 C4’ O4’ C1’ C2’

CYT NU1 O4’ C1’ C2’ C3’

CYT NU2 C1’ C2’ C3’ C4’

CYT NU3 C2’ C3’ C4’ O4’

CYT NU4 C3’ C4’ O4’ C1’

The first line describes that a PSEUDOrotation angle is to be defined for CYT that is called PPA
and is made up of the five angles NU0-NU4. Then the definition for NU0-NU4 should also
appear in the file in the same format as the example given above for LEU PSI.

PPA stands for Pseudorotation Phase Angle and is the angle that should appear in the input
constraint file when using pseudorotation constraints. The program then uses the definition of
that PPA angle in the library file to look for the 5 other angles (NU0-NU4 in this case) which it
then generates restraints for. PPA for proline residues is included in the standard library as well
as for the DNA nucleotides.

3/3/06

Using Sander NMR refinement Page 193

If the -les flag is set, the program will prepare torsion angle restraints for multiple copies
(LES) simulations. In this case, the input pdb file is one without LES copies, i.e. with just a sin-
gle copy of the molecule. The "lesfile" specified by this flag is created by the addles program,
and contains a mapping from original atom numbers into the copy numbers used in the multiple-
copies simulation.

Torsion angle constraints defined here cannot span two different copy sets, i.e., there cannot
be some atoms of a particular torsion that are in one multiple copy set, and other atoms from the
same torsion that are in other copy sets. It is OK to have some atoms with single copies, and oth-
ers with multiple copies in the same torsion. The program will create as many duplicate torsions
as there are copies.

A good alternative to interpreting J-coupling constants in terms of torsion angle restraints is
to refine directly against the coupling constants themselves, using an appropriate Karplus relation.
See the discussion of the variable RJCOEF, above.

6.12.8. Chirality restraints: makeCHIR_RST

Usage: makeCHIR_RST <pdb-file> <output-constraint-file>

We also find it useful to add chirality constraints and trans-peptide ω constraints (where
appropriate) to prevent chirality inversions or peptide bond flips during the high-temperature por-
tions of simulated annealing runs. The program makeCHIR_RST will create these constraints.
Note that you may have to edit the output of this program to change trans peptide constraints to
cis, as appropriate.

6.12.9. Direct dipolar coupling restraints: makeDIP_RST
For simulations with residual dipolar coupling restraints, the makeDIP_RST.protein,

makeDIP_RST.dna and makeDIP_RST.diana are simple codes to prepare the input file. Use -help
to obtain a more detailed description of the usage. For now, this code only handles backbone NH
and CαH data. The header specifying values for various parameters needs to be manually added
to the output of makeDIP_RST.

Use of residual dipolar coupling restraints is new both for Amber and for the general NMR
community. Refinement against these data should be carried out with care, and the optimal values
for the force constant, penalty function, and initial guesses for the alignment tensor components
are still under investigation. Here are some suggestions from the experiences so far:

(1) Beware of overfitting the dipolar coupling data in the expense of Amber force field
energy. These dipolar coupling data are very sensitive to tiny changes in the structure. It
is often possible to drastically improve the fitting by making small distortions in the back-
bone angles. We recommend inclusion of explicit angle restraints to enforce ideal back-
bone geometry, especially for those residues that have corresponding residual dipolar cou-
pling data.

(2) The initial values for the Cartesian components of the alignment tensor can influence the
final structure and alignment if the structure is not fixed (ibelly = 0). For a fixed structure
(ibelly = 1), these values do not matter. Therefore, the current "best" strategy is to fit the
experimental data to the fixed starting structure, and use the alignment tensor[s] obtained
from this fitting as the initial guesses for further refinement.

3/3/06

Using Sander NMR refinement Page 194

(3) Amber is capable of simultaneously fitting more than one set of alignment data. This
allows the use of individually obtained datasets with different alignment tensors. How-
ev er, if the different sets of data have equal directions of alignment but different magni-
tudes, using an overall scaling factor for these data with a single alignment tensor could
greatly reduce the number of fitting parameters.

(4) Because the dipolar coupling splittings depend on the square root of the order parameters
(0 ≤ S2 ≤1), these order parameters describing internal motion of individual residues are
often neglected (N. Tjandra and A. Bax, Science 278, 1111-1113, 1997). However, the
square root of a small number can still be noticeably smaller than 1, so this may introduce
undesirable errors in the calculations.

6.12.10. Getting summaries of NMR violations
If you specify LISTOUT=POUT when running sander, the output file will contain a lot of

detailed information about the remaining restraint violations at the end of the run. When running
a family of structures, it can be useful to process these ouput files with sviol, which takes a list of
sander output files on the command line, and sends a summary of energies and violations to STD-
OUT. If you have more than 20 or so structures to analyze, the output from sviol becomes
unwieldy. In this case you may also wish to use sviol2, which prints out somewhat less detailed
information, but which can be used on larger families of structures. The senergy script gives a
more detailed view of force-field energies from a series of structures. (We thank the TSRI NMR
community for helping to put these scripts together, and for providing many useful suggestions.)

6.12.11. Time-averaged restraints.
The model of the previous sections involves the "single-average-structure" idea, and tries to

fit all constraints to a single model, with minimal deviations. A generalization of this model
treats distance constraints arising from from NOE crosspeaks (for example) as being the average
distance determined from a trajectory, rather than as the single distance derived from an average
structure. Time-averaged bonds and angles are calculated as

(6.37)r = (1 /C)
⎧
⎨
⎩

t

0
∫ e(t′−t)/τ r(t′)−i dt′

⎫
⎬
⎭

−1/i

where

r = time-averaged value of the internal coordinate (distance or angle)

t = the current time

τ = the exponential decay constant

r(t′) = the value of the internal coordinate at time t’

i = average is over internals to the inverse of i. Usually i = 3 or 6 for NOE dis-
tances, and −1 (linear averaging) for angles and torsions.

C = a normalization integral.

Time-averaged torsions are calculated as

(6.38)< φ > = tan−1(< sin(φ) > / < cos(φ) >)

where φ is the torsion, and < sin(φ) > and < cos(φ) > are calculated using the equation above with

3/3/06

Using Sander NMR refinement Page 195

sin(φ(t′)) or cos(φ(t′)) substituted for r(t’).

Forces for time-averaged restraints can be calculated either of two ways. This option is cho-
sen with the DISAVI / ANGAVI / TORAVI commands (Section 1). In the first (the default),

(6.39)∂E/∂x = (∂E/∂r) (∂r/∂r(t)) (∂r(t)/∂x)

(and analogously for y and z). The forces then correspond to the standard flat-bottomed well
functional form, with the instantaneous value of the internal replaced by the time-averaged value.
For example, when r3 < r < r4,

(6.40)E = k3(r − r3)2

and similarly for other ranges of r.

When the second option for calculating forces is chosen (IINC = 1 on a DISAVI, ANGAVI
or TORAVI card), forces are calculated as

(6.41)∂E/∂x = (∂E/∂r) (∂r(t)/∂x)

For example, when r3 < r < r4,

(6.42)∂E/∂x = 2 k3 (r − r3) (∂r(t)/∂x)

Integration of this equation does not give Equation (6.40), but rather a non-intuitive expression for
the energy (although one that still forces the bond to the target range). The reason that it may
sometimes be preferable to use this second option is that the term ∂r/∂r(t), which occurs in the
exact expression [Eq. (6.39)], varies as (r/r(t))1+i . When i=3, this means the forces can be varying
with the fourth power the distance, which can possibly lead to very large transient forces and
instabilities in the molecular dynamics trajectory. [Note that this will not be the case when linear
scaling is performed, i.e. when i=−1, as is generally the case for valence and torsion angles. Thus,
for linear scaling, the default (exact) force calculation should be used].

It should be noted that forces calculated using Equation (6.41) are not conservative forces,
and would cause the system to gradually heat up, if no velocity rescaling were performed. The
temperature coupling algorithm should act to maintain the average temperature near the target
value. At any rate, this heating tendency should not be a problem in simulations, such as fitting
NMR data, where MD is being used to sample conformational space rather than to extract ther-
modynamic data.

This section has described the methods of time-averaged restraints. For more discussion, the
interested user is urged to consult studies where this method has been used [167-171].

6.12.12. Multiple copies refinement using LES
NMR restraints can be made compatible with the multiple copies (LES) facility; see the fol-

lowing chapter for more information about LES. To use NMR constraints with LES, you need to
do two things:

(1) Add a line like "file wnmr name=(lesnmr) wovr" to your input to addles. The
filename (lesnmr in this example) may be whatever you wish. This will cause addles to
output an additional file that is needed at the next step.

(2) Add "-les lesnmr" to the command line arguments to makeDIST_RST. This will
read in the file created by addles containing information about the copies. All NMR
restraints will then be interpreted as "ambiguous" restraints, so that if any of the copies
satisfies the restraint, the penalty goes to zero.

3/3/06

Using Sander NMR refinement Page 196

Note that although this scheme has worked well on small peptide test cases, we have yet not used
it extensively for larger problems. This should be treated as an experimental option, and users
should use caution in applying or interpreting the results.

6.12.13. Some sample input files
The next few pages contain excerpts from some sample NMR refinement files used at TSRI.

The first example just sets up a simple (but often effective) simulated annealing run. You may
have to adjust the length, temperature maximum, etc. somewhat to fit your problem, but these val-
ues work well for many "ordinary" NMR problems.

3/3/06

Using Sander NMR refinement Page 197

1. Simulated annealing NMR refinement

15ps simulated annealing protocol

&cntrl

nstlim=15000, ntt=1, (time limit, temp. control)
scee=1.2, (scee must be set - 1-4 scale factor)
ntpr=500, pencut=0.1, (control of printout)
ipnlty=1, nmropt=1, (NMR penalty function options)
vlimit=10, (prevent bad temp. jumps)
ntb=0, (non-periodic simulation)

/

&ewald

eedmeth=5, (use r dielectric)
/

#
Simple simulated annealing algorithm:
#
from steps 0 to 1000: raise target temperature 10->1200K
from steps 1000 to 3000: leave at 1200K
from steps 3000 to 15000: re-cool to low temperatures
#
&wt type=’TEMP0’, istep1=0,istep2=1000,value1=10.,

value2=1200., /

&wt type=’TEMP0’, istep1=1001, istep2=3000, value1=1200.,

value2=1200.0, /

&wt type=’TEMP0’, istep1=3001, istep2=15000, value1=0.,

value2=0.0, /

#
Strength of temperature coupling:
steps 0 to 3000: tight coupling for heating and equilibration
steps 3000 to 11000: slow cooling phase
steps 11000 to 13000: somewhat faster cooling
steps 13000 to 15000: fast cooling, like a minimization
#
&wt type=’TAUTP’, istep1=0,istep2=3000,value1=0.2,

value2=0.2, /

&wt type=’TAUTP’, istep1=3001,istep2=11000,value1=4.0,

value2=2.0, /

&wt type=’TAUTP’, istep1=11001,istep2=13000,value1=1.0,

value2=1.0, /

&wt type=’TAUTP’, istep1=13001,istep2=14000,value1=0.5,

value2=0.5, /

&wt type=’TAUTP’, istep1=14001,istep2=15000,value1=0.05,

value2=0.05, /

(continued on next page)

3/3/06

Using Sander NMR refinement Page 198

1. Simulated annealing NMR refinement (continued)

#
"Ramp up" the restraints over the first 3000 steps:
#
&wt type=’REST’, istep1=0,istep2=3000,value1=0.1,

value2=1.0, /

&wt type=’REST’, istep1=3001,istep2=15000,value1=1.0,

value2=1.0, /

&wt type=’END’ /

LISTOUT=POUT (get restraint violation list)
DISANG=RST.f (file containing NMR restraints)

The next example just shows some parts of the actual RST file that sander would read. This
file would ordinarily not be made or edited by hand; rather, run the programs makeDIST_RST,
makeANG_RST and makeCHIR_RST, combining the three outputs together to construct the RST
file.

2. Part of the RST.f file referred to above

first, some distance constraints prepared by makeDIST_RST:
(comment line is input to makeRST, &rst namelist is output)
#
#(proton 1 proton 2 upper bound)
#---
#
2 ILE HA 3 ALA HN 4.00

#

&rst iat= 23, 40, r3= 4.00, r4= 4.50,

r1 = 1.3, r2 = 1.8, rk2=0.0, rk3=32.0, ir6=1, /

#

3 ALA HA 4 GLU HN 4.00

#

&rst iat= 42, 50, r3= 4.00, r4= 4.50, /

#

3 ALA HN 3 ALA MB 5.50

#

&rst iat= 40, -1, r3= 6.22, r4= 6.72,

igr1= 0, 0, 0, 0, igr2= 44, 45, 46, 0, /

#

.......etc......

3/3/06

Using Sander NMR refinement Page 199

2. Part of the RST.f file referred to above (continued)

#
next, some dihedral angle constraints, from makeANG_RST:
#
&rst iat= 213, 215, 217, 233, r1=-190.0,

r2=-160.0, r3= -80.0, r4= -50.0, /

&rst iat= 233, 235, 237, 249, r1=-190.0,

r2=-160.0, r3= -80.0, r4= -50.0, /

.......etc.......
#
next, chirality and omega constraints prepared by makeCHIR_RST:
#
#

chirality for residue 1 atoms: CA CG HB2 HB3

&rst iat= 3 , 8 , 6 , 7 ,

r1=10., r2=60., r3=80., r4=130., rk2 = 10., rk3=10., /

#

chirality for residue 1 atoms: CB SD HG2 HG3

&rst iat= 5 , 11 , 9 , 10 , /

#

chirality for residue 1 atoms: N C HA CB

&rst iat= 1 , 18 , 4 , 5 , /

#

chirality for residue 2 atoms: CA CG2 CG1 HB

&rst iat= 22 , 26 , 30 , 25 , /

#

......etc........

trans-omega constraint for residue 2
&rst iat= 22 , 20 , 18 , 3 ,

r1=155., r2=175., r3=185., r4=205., rk2 = 80., rk3=80., /

#
trans-omega constraint for residue 3
&rst iat= 41 , 39 , 37 , 22 , /

#
trans-omega constraint for residue 4
&rst iat= 51 , 49 , 47 , 41 , /

#
......etc........
#

The next example is an input file for volume-based NOE refinement. As with the dis-
tance/angle RST file shown above, the user would generally not construct this file, but create it
from a "7-column" file using the makeDIST_RST program. Hand-editing might be used at the
top of the file, to change the correlation times, etc.

3/3/06

Using Sander NMR refinement Page 200

3. Sample NOESY intensity input file

A part of a NOESY intensity file:

&noeexp

id2o=1, (exchangeable protons removed)
oscale=6.21e-4, (scale between exp. and calc. intensity units)
taumet=0.04, (correlation time for methyl rotation, in ns.)
taurot=4.2, (protein tumbling time, in ns.)
NPEAK = 13*3, (three peaks, each with 13 mixing times)
EMIX = 2.0E-02, 3.0E-02, 4.0E-02, 5.0E-02, 6.0E-02,

8.0E-02, 0.1, 0.126, 0.175, 0.2, 0.25, 0.3, 0.35,

(mixing times, in sec.)
IHP(1,1) = 13*423, IHP(1,2) = 13*1029, IHP(1,3) = 13*421,

(number of the first proton)
JHP(1,1) = 78*568, JHP(1,2) = 65*1057, JHP(1,3) = 13*421,

(number of the second proton)
AEXP(1,1) = 5.7244, 7.6276, 7.7677, 9.3519,

10.733, 15.348, 18.601,

21.314, 26.999, 30.579,

33.57, 37.23, 40.011,

(intensities for the first cross-peak)
AEXP(1,2) = 8.067, 11.095, 13.127, 18.316,

22.19, 26.514, 30.748,

39.438, 44.065, 47.336,

54.467, 56.06, 60.113,

AEXP(1,3) = 7.708, 13.019, 15.943, 19.374,

25.322, 28.118, 35.118,

40.581, 49.054, 53.083,

56.297, 59.326, 62.174,

/

SUBMOL1

RES 27 27 29 29 39 41 57 57 70 70 72 72 82 82 (residues in this submol)
END

END

Next, we illustrate the form of the file that holds residual dipolar coupling restraints. Again,
this would generally be created from a human-readable input using the program makeDIP_RST.

3/3/06

Using Sander NMR refinement Page 201

5. Residual dipolar restraints, prepared by makeDIP_RST:

&align

ndip=91, dcut=-1.0, gigj = 37*-3.1631, 54*7.8467,

s11=3.883, s22=53.922, s12=33.855, s13=-4.508, s23=-0.559,

id(1)=188, jd(1)=189, dobsu(1)= 6.24, dobsl(1)= 6.24,

id(2)=208, jd(2)=209, dobsu(2)= -10.39, dobsl(1)= -10.39,

id(3)=243, jd(3)=244, dobsu(3)= -8.12, dobsl(1)= -8.12,

....

id(91)=1393, jd(91)=1394, dobsu(91)= -19.64, dobsl(91) = -19.64,

/

Finally, we show how the detailed input to sander could be used to generate a more compli-
cated restraint. Here is where the user would have to understand the details of the RST file, since
there are no "canned" programs to create this sort of restraint. This illustrates, though, the poten-
tial power of the program.

3/3/06

Using Sander NMR refinement Page 202

5. A more complicated constraint

1) Define two centers of mass. COM1 is defined by
{C1 in residue 1; C1 in residue 2; N2 in residue 3; C1 in residue 4}.
COM2 is defined by {C4 in residue 1; O4 in residue 1; N* in residue 1}.
(These definitions are effected by the igr1/igr2 and grnam1/grnam2
variables; You can use up to 200 atoms to define a center-of-mass
group)
#
2) Set up a distance restraint between COM1 and COM2 which goes from a
target value of 5.0A to 2.5A, with a force constant of 1.0, over steps 1-5000.
#
3) Set up a distance restraint between COM1 and COM2 which remains fixed
at the value of 2.5A as the force slowly constant decreases from
1.0 to 0.01 over steps 5001-10000.
#
4) Sets up no distance restraint past step 10000, so that free (unrestrained)
dynamics takes place past this step.
#

&rst iat=-1,-1, nstep1=1,nstep2=5000,

iresid=1,irstyp=0,ifvari=1,ninc=0,imult=0,ir6=0,ifntyp=0,

r1=0.00000E+00,r2=5.0000,r3=5.0000,

r4=99.000,rk2=1.0000,rk3=1.0000,

r1a=0.00000E+00,r2a=2.5000,r3a=2.5000,

r4a=99.000,rk2a=1.0000,rk3a=1.0000,

igr1 = 2,3,4,5,0,

grnam1(1)=’C1’,grnam1(2)=’C1’,grnam1(3)=’N2’,grnam1(4)=’C1’,

igr2 = 1,1,1,0,

grnam2(1)=’C4’,grnam2(2)=’O4’,grnam2(3)=’N*’,

/

&rst iat=-1,-1, nstep1=5001,nstep2=10000,

iresid=1,irstyp=0,ifvari=1,ninc=0,imult=0,ir6=0,ifntyp=0,

r1=0.00000E+00,r2=2.5000,r3=2.5000,

r4=99.000,rk2=1.0000,rk3=1.0000,

r1a=0.00000E+00,r2a=2.5000,r3a=2.5000,

r4a=99.000,rk2a=1.0000,rk3a=0.0100,

igr1 = 2,3,4,5,0,

grnam1(1)=’C1’,grnam1(2)=’C1’,grnam1(3)=’N2’,grnam1(4)=’C1’,

igr2 = 1,1,1,0,

grnam2(1)=’C4’,grnam2(2)=’O4’,grnam2(3)=’N*’,

/

3/3/06

Using Sander Path integral MD Page 203

6.13. Path-Integral Molecular Dynamics

6.13.1. General theory.
Based on Feynman’s formulation of quantum statistical mechanics in terms of path-integral,

Path-Integral Molecular Dynamics (PIMD) is a computationally efficient method for calculating
equilibrium properties (both thermodynamic and structural) of a quantum many-body system that
is described by the canonical (NVT) ensemble. In the following we briefly illustrate the main
principles of the path-integral approach, and we derive the fundamental equations underlying its
implementation using standard molecular dynamics methods. Given the broad area of this field,
we strongly recommend the user to consult the literature for a more detailed discussion path-inte-
gral methods [172-174].

Within the framework of quantum statistical mechanics we consider an ensemble of systems
described by the Hamiltonian H. Using Dirac notation, each system defines a state vector |Ψ (k) >
in the Hilbert space, with k=1,...,Z, and Z representing the total number of members in the ensem-
ble. If {|φi>} is a complete set of vectors in the Hilbert space, then each state vector can be

expanded as

(6.43)|Ψ(k) > =
i
Σ c(k)

i |φ i >

The expectation value of any observable described by an operator A is thus obtained as an aver-
age over the members of the ensemble

(6.44)< A > =
1

Z

Z

k=1
Σ < Ψ(k)|A|Ψ(k) > =

i, j
Σ ⎛

⎝
1

Z

Z

k=1
Σ c(k)*

j c(k)
i

⎞
⎠

< φ j|A|φ i > =
i, j
Σ ρ i, j A j,i = Tr(ρ A)

Here, ρi,j is the density matrix:

(6.45)ρ i, j =
1

Z

Z

k=1
Σ c(k)*

j c(k)
i ,

Tr(ρ A) is the trace of (ρ A):

(6.46)Tr(ρ A) =
i
Σ < φ i|ρ A|φ i >

and cj
(k)* indicates the complex conjugate of cj

(k).

It is possible to show that if {|ζi>} is a complete set of vectors which diagonalize ρ, i.e. ρ |ζi> = ζi
|ζi>, then the eigenvalues ζi satisfy the following relations:

(6.47)0 ≤ ζ i ≤ 1 and
i
Σζ i = 1

It is thus manifest that the eigenvalues ζi of ρ can be interpreted as probabilities.

The equation of motion for the density matrix can be derived from the action of the time-evolu-
tion operator U(t) = e−iHt/h on |Ψ (k)(0)>:

(6.48)ρ(t) =
1

Z

Z

k=1
Σ |Ψ(k)(t) >< Ψ(k)(t)| =

1

Z

Z

k=1
Σ e−itH /h|Ψ(k)(0) >< Ψ(k)(0)|eitH /h = e−itH /h ρ(0)eitH /h

Differentiating both sides with respect to time, one obtains

3/3/06

Using Sander Path integral MD Page 204

∂ρ(t)

∂t
= −

iH

h
e−itH /h ρ(0)eitH /h + e−itH /h ρ(0)

iH

h
eitH /h = −

i

h
(H ρ(t) − ρ(t)H) = −

i

h
[H , ρ(t)]

where [H,ρ(t)] is the commutator between H and ρ(t).

Since in equilibrium ρ(t) must be independent of time, i.e. ∂ρ(t)/∂t = 0, it follows that [H,ρ(t)]=0.
This means that it is possible to diagonalize H and ρ simultaneously, that is:

(6.50)ρ = f (H) =
i
Σ f (Ei)|Ei >< Ei|

where Ei and |Ei> are the eigenvalues and eigenfunctions of H, respectively.

The particular form of f(Ei) depends on the specific ensemble under consideration. In the canoni-

cal (NVT) ensemble,

(6.51)f (Ei) =
e−β Ei

Z

where β = 1/kT, and Z is the canonical partition function

(6.52)Z =
i
Σ e−β Ei

From the previous equations it follows that the canonical density matrix is defined as

(6.53)ρ =
e−β H

Z

and the expectation value of any operator A can thus be computed as

(6.54)< A > = Tr(ρ A) =
1

Z
Tr(Ae−β H)

In order to describe the path-integral formulation of the canonical density matrix and partition
function, we consider here a single quantum particle of mass m, with momentum p and coordi-
nate x, in a one-dimensional potential v(x). Generalization to a multidimensional many-particle
system is straightforward. The Hamiltonian for the one-dimensional problem is written as

(6.55)H =
p2

2m
+ v(x) = T + V

where T and V are the kinetic and potential operators, respectively. Using the coordinate basis set
{|x>}, the canonical partition function can be computed as

(6.56)Z = ∫ dx < x|e−β H|x >= ∫ dx < x|e−β(T+V)|x >

In general T and V do not commute, i.e. [T,V]≠ 0, and consequently e-β (T+V) cannot be calcu-
lated directly. Howev er, the Trotter theorem [175] states that for any two operators A and B:

(6.57)eλ(A+B) =
P−>∞
lim

⎡
⎢
⎣
e

λ B

2P e
λ A

P e
λ B

2P
⎤
⎥
⎦

and, therefore, the canonical partition function can be written as

(6.58)Z =
P−>∞
lim ∫ dx < x|e

−
βV

2P e
−

β T

P e
−

βV

2P |x >

Defining Ω = e-β V/2P eβ T/P e-β V/2P and using the completeness of the coordinate basis, the quan-
tum partition function then becomes

3/3/06

Using Sander Path integral MD Page 205

(6.59)Z =
P−>∞
lim ∫ dx < x|ΩP|x > =

P−>∞
lim ∫ dx1dx2

. . . dxP < x1|Ω|x2 >< x2|Ω|x3>
. . . < xP|Ω|x1 >

After some algebra, it is possible to show that

(6.60)Z =
P−>∞
lim ∫ dx1dx2

. . . dxP
⎛
⎝

mP

h2 β
⎞
⎠

P/2

e
−

P

i=1
Σ

⎡
⎢
⎣

mP

β h2 (xi+1−xi)
2+

β
P

v(xi)
⎤
⎥
⎦xP+1=x1

After introducing a "chain" frequency

(6.61)ω P =
√P

β h

and defining an effective potential as

(6.62)Ueff (x1, . . . , xP) =
P

i=1
Σ

⎡
⎢
⎣

1

2
mω 2

P(xi+1 − xi)
2 +

β
P

v(xi)
⎤
⎥
⎦xP+1=x1

the canonical partition function is finally expressed as

(6.63)Z =
P−>∞
lim ∫ dx1dx2

. . . dxP
⎛
⎝

mP

h2 β
⎞
⎠

P/2

e−βUeff (x1,... ,xP)

In this form, the quantum partition function looks like a classical configurational partition func-
tion for a P-particle systems, where the P particles (generally referred to as "beads") are discrete
points along a cyclic path [176]. Each bead is coupled to its nearest neighbors by harmonic
springs with frequency ωP, and is subject to the external potential v(x). It is possible to make the

connection between the quantum partition function and a fictitious classical P-particle system
more manifest by introducing a set of P Gaussian integrals:

(6.64)Z =
P−>∞
lim Λ ∫ dp1dp2

. . . dpP ∫ dx1dx2
. . . dxP

⎛
⎝

mP

h2 β
⎞
⎠

P/2

e
−β

⎡
⎢
⎣

P

i=1
Σ p2

i

2µ i
+Ueff (x1,... ,xP)

⎤
⎥
⎦

The new Gaussian variables are regarded as fictitious classical "momenta" and, consequently, the
constants µi have units of mass. Since these Gaussian integrals are uncoupled and can be calcu-

lated analytically, the overall constant Λ can be chosen so as to reproduce the correct prefactor.
Therefore, one has complete freedom to choose µi. The quantum partition function can thus be

evaluated using classical molecular dynamics based on equations of motion derived from a ficti-
tious classical Hamiltonian of the form

(6.65)H(p, x) =
P

i=1
Σ p2

i

2µ i
+ Ueff (x1, . . . , xP)

However, ordinary MD generates a microcanonical distribution of H, i.e. a distribution function
of the form δ (H(p,x)-E), where E is the conserved energy. This is clearly not the form appearing
in the quantum partition function which requires a canonical distribution of the form e-βH. In
order to satisfy this condition the system is coupled to a thermostat which garantees that the
canonical distribution is rigorously obtained. As shown above the exact quantum partition func-
tion is obtained in the limit of an infinite number of beads P. In practice this is obviously not pos-
sible, and therefore P must be chosen large enough that all thermodynamic properties are con-
verged. Since P is directly related to the quantum nature of the system under consideration, a
larger number of beads is necessary for systems containing light atoms (e.g., H and D) and for
low temperature.

3/3/06

Using Sander Path integral MD Page 206

The current implementation of PIMD in Amber follows the so-called primitive approximation
[177] which is directly obtained from the formulation provided above with the fictitious mass of
each bead chosen as µi= m/P. The equations of motion are propagated using the Leapfrog algo-

rithm and a canonical distribution is obtained from the use of a Langevin thermostat. The ener-
getics of the quantum system (total, kinetic and potential energy) is computed using the so-called
"virial estimator" [177,178]. Comparison with the results obtained with a more common imple-
mentation of PIMD, which makes use of the velocity-Verlet propagator coupled to Nosé-Hoover
chains of thermostats, shows that the two implementations provide identical values for all observ-
ables tested.

6.13.2. Preparing PIMD input files
The mdin input for a PIMD run is the same as for a regular (classical MD) run. The differ-

ence is that your must use sander.PIMD as your executable, and you must prepare the prmtop file
in a special way.

PIMD input files are generated using addles (see Chapter 9). Basically, a normal topology
file and coordinate file are needed, then a control scrippt (usually named addles.in) should be
written. PIMD input files can then be generated by running "addles < addles.in". The following is
what a typical addles.in will look like(lines start with a ’˜’ are comments):

˜designate normal topology file

file rprm name=(input.prmtop) read

˜designate normal coordinate file

file rcrd name=(input.inpcrd) read

˜where to put PIMD topology file

file wprm name=(pimd.prmtop) wovr

˜where to put PIMD coordinate file

file wcrd name=(pimd.inpcrd) wovr

action

˜use original mass(it is required path integral theory)

omas

˜make pimd style topology file(do not put other copy in the exclusion list)

pimd

˜make 4 copies of atom 1-648(should be the whole system)

space numc=4 pick #prt 1 648 done

*EOD

Several things should be emphasized here about writting addles.in for PIMD:

(1) Make sure you are making copies of the whole system, since currently sander.PIMD can’t
run when only part of the system is copied. (Our hope is that future versions of the code
will allow different parts of the system to be represented by different numbers of "beads",

3/3/06

Using Sander Path integral MD Page 207

but this functionality is not available at present.)

(2) The "omas" tag must be turned on to make every atom use original mass during the simu-
lation; this is required by the path integral theory.

(3) The "pimd" tag should be turned to get a smaller topology file. The normal action of
addles is to put atoms from other copies to the exclusion list for the current copy. Since
PIMD always make copies of the whole system, this would create a huge exclusion list
and a huge topology file. This can be avoided by turning on the "pimd" tag.

(4) How many copies to create is a tradeoff between accuracy and efficiency. To get con-
verged total energies, 15-30 copies may be required; however, other aspects of quantum
behavior may be seen with fewer copies. Be prepared to experiment on your system to
see what is required.

6.14. Using the AMOEBA force field
The Amoeba force field is a recently developed polarizable force field with parameters for

water, univalent ions, small organic molecules and proteins [8,9,179,180]. Differences from the
current amber force fields include more complex valence terms including anharmonic bond and
angle corrections and bond angle and bond dihedral cross terms, and a two dimensional spline fit
for the phi-psi bitorsional energy. The differences in the nonbond treatment include the use of
atomic multipoles up to quadrupole order, induced dipoles using a Thole’ screening model, and
the use of the Halgren buffered 7-14 functional form for van der Waals interactions. The PME
implementation used here, as well as a multigrid approach for atomic multipoles, is described in
Ref. [181].

Preparation of the necessary coordinate and parameter files for performing simulations
using the amoeba forcefield is currently somewhat complex. Please check the Amber web site for
updates, as we are working to make the process simpler. Also, detailed examples will also be
posted on the web site; what we give here is an overview to help you understand what is needed.
Use of the Tinker package is critical, so step one is to obtain that package available from Jay Pon-
der: http://dasher.wustl.edu/tinker/. You will need version 4.3 or later.

In general, to create Amber inpcrd and prmtop files, one runs the amoeba_parm which is
built as a standard part of Amber. The amoeba_parm program requires five inputs:

(1) a Tinker .xyz file;

(2) the output of the analyze code of Tinker, run on that .xyz file, using the PC options;

(3) a Tinker parameter file (needed for the phi-psi bicubic splines);

(4) a .pdb file whose atomic coords agree with the .xyz file. This latter requirement (needed
to assign amber atom and residue names) is best met by using the xyzpdb executable from
Tinker. Check however that the pdb names make sense. Tinker still has trouble with some
non-standard residue types, and some hand editing may be needed.

(5) although the above is sufficient for an initial configuration, if a Tinker restart in the form
of a .dyn file is available, amoeba_parm will use the velocities and accelerations from that
file to get an equivalent start for sander. This is important for checking equivalence of
dynamics in sander vs. Tinker.

3/3/06

Using Sander The AMOEBA force field Page 208

In addition to the above files, you need to set parameters in the mdin file for sander that are equiv-
alent to those used by Tinker (in its .key file). Note that currently Tinker uses a standard ewald
summation for amoeba, but a nearly equivalent PME formulation will be available soon.

With the use of Amoeba, minimization as well as usual sander methods of molecular
dynamics can be used, including constant temperature and pressure simulations. In addition, with
the amoeba implementation it is possible to use the Beeman dynamics integrator, which is helpful
in making detailed comparisons to Tinker results. Note that the Amoeba forcefield is
parametrized for fully flexible molecules. At this time it is not possible to use SHAKE with this
forcefield.

The parameters ew_coeff, nfft1, nfft2, nfft3, and order from the &ewald section of input all
relate to the accuracy of the PME method, which is used in the Amoeba implementation in
sander. Due to the use of atomic quadrupoles, order (i.e. the B-spline polynomial degree plus
one) needs to be at least 5 since the B-spline needs 3 continuous derivatives. The ew_coeff
together with the direct sum cutoff (see below) controls the accuracy in the Ewald direct sum, and
ew_coeff together with the PME grid dimensions nfft1,2,3 and order controls the accuracy in the
reciprocal sum. Since Amoeba atomic multipoles are typically dominated by the charges, experi-
ence gained in the usual use of PME is pertinent. Typical values we have used for a good cost vs.
accuracy balance are ew_coeff=0.45, order=5, and nfft1,2,3 approximately 1.25 times the cell
length in that direction.

Some specific amoeba-related input parameters are given here. They should be placed in
the &amoeba namelist, following the &cntrl namelist where iamoeba has been set to 1.

BEEMAN_INTEGRATOR
Setting this to be one turns on the Bbeeman integrator. This is the default inte-
grator for Amoeba in Tinker. In sander this integrator can be used for NVE
simulations, or for NVT or NTP simulations using the Berendson coupling
scheme. (This means that you must set ntt to 0 or 1 if you use the Beeman
integrator.) By default, beeman_integrator=0, and the usual velocity Verlet
integration scheme is used instead..

VERBOSE In addition to the usual sander output, by setting the logical variable ver-
bose=.true., energy and virial components can be output. By default, ver-
bose=.false.

EE_DSUM_CUT This is the ewald direct sum cutoff. In the amoeba implementation this is
allowed to be different from the nonbond cutoff specifid by cut. It should be
less than or equal to the latter. (Note, this feature does not apply to the direct
sum for standard amber force fields, which use the nonbond cutoff for the
Ewald direct sum as well as van der Waals interactions. The default is 7.0
Angstroms, which is conservative for energy conservation with
ew_coeff=0.45.

DIPOLE_SCF_TOL
The induced dipoles in the amoeba force field are solutions to a set of linear
equations (like the Applequist model but modified by Thole’ damping for
close dipole-dipole interactions). These equations are solved iteratively by the
method of successive over-relaxation. dipole_scf_tol is the convergence crite-
rion for the iterative solution to the linear equations. The iterations towards
convergence stop when the RMS difference between successive sets of
induced dipoles is less than this tolerance in Debye. The default is set to 0.01
Debye, which has been seen to give reasonable energetic and dynamic, but

3/3/06

Using Sander The AMOEBA force field Page 209

requires mild temperature restraints. Good energy conservation in NVE simu-
lations requires a tolerance of about 10ˆ-6 Debye tolerance.

SOR_COEFFICIENT
This is the successive over-relaxation parameter. This can be adjusted to opti-
mize the number of iterations needed to achieve convergence. Default value is
0.75. Productive values seem to be in the range 0.6-0.8 .The optimal values
seem to depend on the polarizabilities of the system atoms.

DIPOLE_SCF_ITER_MAX
This prevents infinite iterations when the polarization equations are somehow
not converging. Possible reasons for this are a bad sor_coefficient, exacer-
bated by a close contact. Default is 50. For comparison, with typical
sor_coefficient values and an equilibrated system it should take 4-7 iterations
to achieve 0.01 Debye convergence and 18-25 iterations to achieve 10-6

Debye.

EE_DAMPED_CUT
This is used to cutoff the Thole’ damping interactions. The default value is 4.5
Angstroms, which should work for the typical sized polarizabilities encoun-
tered, and the default Thole’ screening parameter (0.39).

DO_VDW_TAPER
Amoeba uses a Halgren buffered 7-14 form for the van der Waals interactions.
In the Tinker code these are typically evaluated out to 12 Angstroms, with a
taper turned on and no long-range isotropic continuum corrections to the
energy and virial. In the sander implementation, the usual nonbond cutoff
from the &ctrl namelist is used for van der Waals interactions. The long range
correction is available to allow for shorter cutoffs. Setting do_vdw_taper to
one causes VDW interactions to be tapered to zero beginning at 0.9 times the
van der waals cutoff. The taper is a 5th order polynomial switch on the energy
term, which gets differentiated for the forces (atom based switching). Its
turned on by default.

DO_VDW_LONGRANGE
Setting this to one causes the long-range isotropic continuum correction to be
turned on. This adjusts the energy and virial, and in most cases will result in
energies and virials that are fairly invariant to van der Waals cutoff, with or
without the above taper function. The integrals involved in this correction are
done numerically.

3/3/06

Divcon Introduction Page 210

7. Divcon

7.1. Introduction.
DivCon is a linear scaling semi-empirical program for calculation of energies, charges and

geometries of systems up to ˜20,000 atoms. Av ailable features include:

(1) Linear scaling Divide and Conquer (D&C) calculations [182-184].

(2) Cubic scaling standard calculations [74-76].

(3) Single point AM1 [75], PM3 [76], or MNDO [74] calculations.

(4) Geometry Optimization (steepest decent, conjugate gradient, BFGS, and LBFGS avail-
able)

(5) Mulliken, CM1 [185] and CM2 [186] charge analysis

(6) Nuclear Magnetic Resonance prediction and simulation

The program was mainly developed by Steve Dixon. His work includes the development of
the semiempirical Divide and Conquer algorithm, implementation of the D&C and standard
energy and gradient calculations, geometry optimization routines, Mulliken charge analysis, clus-
ter based subsetting strategy and front end of the program. Arjan van der Vaart added the Monte
Carlo routines (single and multi processing), Particle Mesh Ewald routines, grid based subsetting
routines, extension of the cluster based subsetting schemes, CM1 and CM2 charge analysis, den-
sity matrix build routines, density of state analysis, frozen density matrix routines the interaction
energy decomposition routines (serial and parallel), and Talman’s algorithm. Valentin Gogonea
added the SCRF routines. Jim Vincent parallellized the single point energy and geometry opti-
mization routines, the transition state routines and the sodium parameters. Ed Brothers added
dipole and ionization potential routines, the parametrization routines and the sodium parameters.
Dimas Sua’rez added the LBFGS optimization routines, the transition state routines and the fre-
quency calculation routines. Ning Liao has added support for a native Poisson-Boltzmannn(PB)
implementation, and Andrew Wollocott has added support for restrained minimization. Subse-
quently, Hwanho Kim and Lance Westerhoff of QuantumBio Inc. fully audited, optimized, and
modernized much of the source code in order to impart increased stability and extensibility upon
the application. QuantumBio continues to develop DivCon with these same principles in mind.

7.2. Getting Started
DivCon05 packaged with AMBER is capable of performing mixed quantum mechan-

ics/molecular mechanics(QM/MM) linear scaling Semi-Empirical calculations. This allows large
patches of a protein to be studied at a quantum mechanical level of theory while still retaining
charge effects from the surrouding protein. DivCon contains many options that may aid in the
simulation of protein systems with large quantum patches whose keywords can be found within
this manual for a more detailed discussion of their applications and uses. This section will pro-
vide a brief overview of how to get started using DivCon with AMBER. This section should only
be used as a starting point for QM/MM calculations involving DivCon after which the manual
may be consulted for more options and uses. These examples should be a good starting point for
the divcon.in files needed for these QM/MM jobs. DivCon has several default keywords that can
be found in the Keywords section of the manual that are good for general uses, but can easily be

3/3/06

Divcon Getting started Page 211

changed if desired.

7.2.1. Standard Jobs
These jobs are run without the use of DivCon’s linear scaling feature. Standard should only

be used for smaller patches(around 250-300 atoms), afterwhich it will become quite expensive.
Below there is a simple divcon.in file for use in standard jobs when running QM/MM calcula-
tions. This may not be the best input file for every application, just a place to get started when
using DivCon. The manual should be consulted for a more detailed discussion of the keywords
used in this divcon.in file.

DIRECT CARTESIAN AM1 CHARGE=0.0 &

STANDARD CUTBOND=9.0 SHIFT=3.0

END_COORD

7.2.2. Divide and Conquer Jobs
One of DivCon’s best features is the ability to scale linearly to system size for Semi-Empiri-

cal calculations. This is an excellent feature for larger systems(>˜300 atoms) which maybe not be
able to be calculated in other programs. Using divide and conquer requires that the system be
broken into smaller subsystems which is done by keywords in the divcon.in file. The most com-
mon, and easiest, clustering system for proteins is to make each residue a subsystem. These sub-
systems are then surrounded by a buffer to be considered in the subsystem calculations, the size
of which can be declared in the divcon.in file. For more information on the Divide and Conquer
or buffering methods references 1,2, and 3 should be consulted. Again, the example below is a
place to get started on using DivCon and more detailed calculations may require different
keywords and/or values which can be found in the Keywords section of this manual.

DIRECT CARTESIAN AM1 CHARGE=0.0 &

RESIDUE CLUSTER CUTBOND=9.0 SHIFT=3.0

END_COORD

CLUSTER

NCORE=1

DBUFF1=4.5 DBUFF2=2.0

END_CLUSTER

More detailed information on all these keywords and more can be found within the Keywords
section. Also, the keywords that are used by default can be found in the manual along with direc-
tions how to change and use them. These simple examples will give a good starting point for
doing general QM/MM calculations using DivCon and should be acceptable in many cases, but
are not, by any means, a complete input file for DivCon.

7.3. Keywords

3/3/06

Divcon Keywords Page 212

7.3.1. Hamiltonians
AM1 AM1 Hamiltonian to be used.

PM3 PM3 Hamiltonian to be used.

MNDO MNDO Hamiltonian to be used.

MNDO/d MNDO/d Hamiltonian to be used.

PDDG-PM3 PDDG-PM3 Hamiltonian to be used.

NOTE: One Hamiltonian must be selected. There is no default.

7.3.2. Convergence Criterion
ETEST=FLOAT user defined geometry optimization energy change criterion. Default : 0.002

kcal/mol.

GTEST=FLOAT user defined maximum gradient component criterion. Default : 0.500 kcal/
(mol ˜A).

XTEST=FLOAT user defined geometry optimization coordinate change criterion. Default :
0.001 ˜A / 0.001 degrees.

7.3.3. Restrained Atoms
BELLY A subset of the atoms in the system, the belly group, will be allowed to relax

their position during optimization while the rest of the atoms will be kept at
fixed positions by zeroing the corresponding forces. Currently, the BELLY
option requires optimization of both minimum or transition structures using
cartesian coordinates (a FREQ calculation can be also subjected to the
BELLY option).

The BELLY parameter must be included in the input file in order to specify
the BELLY group. Two formats are possible:

BELLY

ATOMS 144-178 310-332

END_BELLY

This means that the BELLY group of moving atoms will be constituted from
atom 144 to atom 178, and from atom 310 to atom 332. Alternatively, the
BELLY group can be selected using residue numbering:

BELLY

RESIDUES 10-13 20

END_BELLY

Only residues from 10 to 13 and residue 20 will be allowed to move during
minimization.

3/3/06

Divcon Keywords Page 213

7.3.4. Output
PRTSUB print subsystem atom lists.

PRTVEC print final eigenvectors. All eigenvectors and eigenvalues will be printed by
default. If the input file contains PRTVEC parameters, only some eigenvectors
will be printed:

PRTVEC

1-458 all

558-960 -15.0 -10.0

45-460 ef 10.0

END_PRTVEC

The first line indicates that only the eigenvectors for atoms 1-458 need to be
printed. These are all eigenvectors when a standard calculation is performed.
For a D&C calculations, these are the eigenstates for subsystems that contain
atoms 1-458. The second line indicates that the eigenstates for atoms 558
through 960 will be printed if the associated eigenvalues are between ?15.0
and -10.0 eV. The third line indicates that the eigenvectors of atoms 45-460
will be printed if the associated eigenvalues are within 10 eV of the Fermi
energy.

DOS perform a density of state analysis. By default, a DOS analysis will be per-
formed on all eigenvalues for all atoms, with interval of 0.5 eV. Intervals and
extend of the DOS analysis can be set by the DOS parameters:

DOS

1-435 0.2

1015-4452 0.3

END_DOS

Here the DOS will be printed for all subsystems that contain atoms 1-435 with
interval of 0.2 eV and for all subsystems that contain atoms 1015 through
4452 with interval of 0.3 eV. Note that for a standard calculation the DOS will
always extend over all atoms.

DIPOLE calculate the magnitude of themolecular dipole moment using all three charge
methods.

IP calculate ionization potential

HOMOLUMO calculate homo-lumo gap. For a D&C run, the homo-lumo gap of all subsys-
tems will be printed.

PRTCOORDS print atomic coordinates .

3/3/06

Divcon Keywords Page 214

PRTPAR Print the AM1/PM3/MNDO parameters for all atom types that are found in
the input file.

SCREEN output vital information to screen. If not included DivCon will run silently
and only reture access to the user once the job is complete.

WRTPDB write final coordinates of an optimization in a "standard" pdb format.

DUMP=INT write restart file (divcon.rst) every INT cycles.

PDUMP=INT write density matrix file (divcon.dmx) every INT SCF iteration

SNAPGEOM Write coordinates during energy optimization (divcon_snapshot.N) at every
N-th optimization step. This can be useful when optimizing very large sys-
tems.

TRAJECTORY dump coordinates to trajectory file (divcon.trj) at restart points.

GEOCALC Calculates geometric parameters. Input takes the form (after the
END_COORD line):

GEO

DISTANCE

1-2

END_DISTANCE

ANGLE

1-2-3

END_ANGLE

DIHEDRAL

1-2-4-3

END_DIHEDRAL

END_GEO

Note that if an equals sign is included after the atom numbers (i.e. 1-2=2.0)
then a set of differences between the calculated values and these numbers are
returned.

ERROR Calculates the difference between accepted and calculated values. An exam-
ple list is shown below, with each component being explained afterward. Note
this is only usable with standard calculations, and this list follows the
END_COORDS line.

ERROR

HEAT=FLOAT

IP=FLOAT

DIPOLE=FLOAT

ASSOCIATION=FLOAT

3/3/06

Divcon Keywords Page 215

FILExINTEGER

FILExINTEGER

END_ASSOC

ETOTDIFF=FLOAT

FILExINTEGER

FILExINTEGER

END_ETOTDIFF

END_ERROR

HEAT is the heat of formation in kcal/mol. IP is ionization potential. DIPOLE
is the Mulliken dipole. ASSOCIATION is the energy of association, and the
lines following it are the files to be used to calculate it. For instance, if the
association energy of a methanol-2 water complex was to calculated, and
methanol was in divcon001.in and water was in divcon002.in, the values on
the two subsequent line would be 1x1 and 2x2. ETOTDIFF is the total energy
difference, and it’s files are designated the same way. Note also that a geome-
try list can be placed inside the ERROR/END_ERROR delimiters using the
format given above.

ZMAKE output a z-matrix using the DivCon z-matrix format. Note that this uses the
first three atoms as the defining atoms, and thus they may not be collinear.

7.3.5. General

ADDMM add MM correction to peptide torsional barrier. (on by default)

NOMM do not use MM correction to peptide torsional barrier.

CARTESIAN Cartesian coordinate format. DivCon reads cartesian coordinates in the format
shown in the following example:

1 N -0.26120 -0.98976 0.00000

2 C 0.64694 0.01940 0.00000

3 C -0.47100 1.06738 0.00000

4 C -1.44202 -0.13945 0.00000

5 O 1.83331 0.04003 0.00000

6 H -0.13870 -1.97802 0.00000

7 H -0.49385 1.68899 -0.88436

8 H -0.49385 1.68899 0.88436

9 H -2.05887 -0.23715 -0.88402

10 H -2.05887 -0.23715 0.88402

Coordinates are in ˜A. The specification of symbols and coordinates is format
free and the maximum characters per line is 80.

RMIN=FLOAT The minimum allowed distance between atoms (results in an error for single
point calculations and geometry optimizations, configuration will be rejected

3/3/06

Divcon Keywords Page 216

in an MC-run when a smaller distance is encountered).

ECRIT=FLOAT set the convergence for the energy in units of eV. (default value is 4x10-6 eV).
The actual value of ECRIT will be relaxed if the gradient norm is large and
the structure is not tiny. This should speed up convergence without any loss
of accuracy

DCRIT=FLOAT set the convergence for the density matrix in atomic units (default value
5x10-4 e). The actual value of DCRIT will be relaxed if the gradient norm is
large and the strucutre is not tiny. This should speed up convergence without
any loss of accuracy.

DESCF=FLOAT related to ECRIT in that it defines the SCF energy convergence criterion.
However, unlike ECRIT, this values is considered absolute(in eV). In affect,
the SCF calculation will not stop until this criterion is reached.

DPSCF=FLOAT related to DCRIT in that it defines the SCF energy convergence criterion.
However, unlike DCRIT, this values is considered absolute(in eV). In affect,
the SCF calculation will not stop until this criterion is reached.

CUTREPUL=FLOAT
set the [xy|xy], [xz|xz], [xx|yy], [xx|zz],[zz|xx], [xx|xx] and [zz|zz] integrals to
zero when the interatomic distance is larger than FLOAT . The CUTREPUL
keyword can be used to speed up a DivCon simulation by limiting the number
of calculations performed.

CUTBOND=FLOAT
cutoff bonding for the H, P and F matrixes beyond FLOAT angstroms. The
CUTBOND keyword can be used to speed up a DivCon simulation by limit-
ing the number of calculations performed.

DIRECT causes all 2-electron integrals to be kept in memory and recalculated at each
step instead of being written out to file. This is the suggested approad as gen-
erally with how fast processor are today and how much memory users have at
their disposal, accessing disk may be more expensive.

FULLSCF turns off pseudo diagonalizations and turns on full diagonalizations. This is
more expensive than pseudo diagonalizations but may be necessary some-
times.

RESIDUE stores residue pointers within DivCon. Also requires that the user denote the
beginning of each residue in the input file by using the "RES" delimiter after
the "z" coordinate.

CHKRES check inter-atomic distances for each residue.

3/3/06

Divcon Keywords Page 217

TEMPK=FLOAT user defined divide and conquer temperature. Units are Kelvin, and default is
1000K.

TESTRUN do setup work and stop before first energy evaluation.

TMAX=FLOAT user defined maximum CPU time in seconds. The default limit is 20ˆ20 sec-
onds.

SHIFT=FLOAT user defined initial dynamic level shift [187] parameter in eV.

XYZSPACE do all operations in xyz space.

MAXIT=INT Set the maximum number of SCF iterations (default: 100). If it takes more
than 100 SCF iterations to converge, it is generally thought that the system
will probably not converge and is exhibiting problems.

DOUBLE=INT perform a double SCF step during a certain number (int) of SCF iteractions.
if INT=0, a double SCF will be done for every SCF iteration (only for non-
geometry optimizations). This will aid in convergence as it guarantees that
the values calculated at each step are based completely on the current step.
By default the first step of an SCF calculation will be a double. Please note,
using DOUBLE will significantly increase the CPU time requred to execute a
DivCon job.

1SCF Perform only the first SCF iteration, i.e. calculate the energy through E =
0.5(H+F)P. Note that this is not equivalent to MAXIT=1, since no diagonal-
ization is performed.

GUESS Build the initial density matrix from one or more density matrix files. These
files are listed by means of the GUESS parameters:

GUESS

A.dmx

b.dmx

END_GUESS

Build the initial density matrix from the files A.dmx and b.dmx. The density
matrix elements of atoms 1 through a are read from A.dmx, for atoms a+1
through n from file b.dmx.

GUESS

2-10 A.dmx 33-41 f

20-30 b.dmx 1-11

END_GUESS

Density matrix information for atoms 2-10 is read from the density matrix ele-
ments of atoms 33-41 of file A.dmx, density matrix information for atoms

3/3/06

Divcon Keywords Page 218

20-30 is read from the density matrix elements of atoms 1- 11 from file
b.dmx. Missing density matrix elements are auto-initialized and a correction
will be applied to constrain the total number of electrons. The density matrix
elements of atoms 2-10 will be kept constant during the SCF iterations by
using the Frozen Density Matrix approximation [188]. It is imperative that
the number of orbitals on a certain atom in the divcon.in file and density
matrix file are the same, i.e. the number of orbitals on atom 2 from divcon.in
and atom 33 from A.dmx should be identical.

Note that the maximum length of a density matrix file name is 20 characters,
no dashes ("-") are allowed in the density matrix file name.

INTGLS=string The INTGLS keyword can have two values. If the value is "INTGLS=TAL-
MAN" then the Talman method of integrals will be used. If the Value is "INT-
GLS=STEWART" then the Stewart integrals will be used. The default, and
recommended value is Talman integrals as this approach has been found to be
the most stable and accurate.

PUSH Only in combination with the CLUSTER keyword (page 22) and when multi-
ple cores (i.e. multiple cluster groups) are defined. Push the different cluster
groups apart. Default is 106 ˜A, the user can define this distance by using
PUSH=FLOAT . When more than two cluster groups are defined, each group is
place on a gridpoint with gridspacing of 106 ˜A or the user defined value.

7.3.6. Gradient

GRADIENT output final gradient. (Note: The gradient for MC calculations contains only
intermolecular terms. No intramolecular terms are involved.)

CENTRAL use central difference in gradient calculation

7.3.7. Atomic Charges

CHARGE=INT a net charge is to be placed on system.

MULLIKEN write Mulliken, CM1, and CM2 charges to output file. NOTE: For a single
point calculation and geometry optimization both Mulliken, CM1 and CM2
charges are calculated.

7.3.8. Subsetting
This is the basis of divide and conquer methodology [182-184]. Subsetting can be per-

formed by hand through the SUB parameters (page 30), or automatically through the keywords
listed below. Subsystems consists of a core surrounded by an inner and outer buffer.

3/3/06

Divcon Keywords Page 219

CLUSTER do cluster based subsetting. Specification of the cluster based subsetting is
through the cluster parameters:

CLUSTER

NCORE=3 DBUFF1=4.0 DBUFF2=2.0

END_CLUSTER

This means that the cores will be build from 3 residues, the first buffer region
extends 4.0 ˜A from the core, the second buffer region 2.0 ˜A from the first
buffer region. Multiple cores (i.e. multiple cluster groups) can be defined by:

CLUSTER

NCORE=2 (1-6 7 8 12-14)

NCORE=3 (9 10 15-25)

NCORE=1 (26 27)

DBUFF1=4.3 DBUFF2=2.0

END_CLUSTER

Cores will be build from 2 residues for residues 1-6, 7, 8, 12-14, from 3
residues for residues 9, 10, 15-25 and from 1 core for residue 26 and 27. The
first buffer region is 4.3 ˜A, the second 2.0 ˜A. Note that all residues should be
used (and only once) in this syntax.

CLUSTER

NCORE=1 (1-20) [-1]

NCORE=1 (21-100) [0]

END_CLUSTER

Cores will be build from 1 residue for residues 1-20 and from 1 residue for
residues 21-100. Moreover, the charge of the subsystems build from residues
1-20 will be contrained to ?1 electron and the charge of the subsystems build
from residues 21-100 to 0 electrons. Only effective when the NO-OVERLAP
keyword is used (see page 23). Charges are constrained by use of multiple
Fermi energies [189].

NO-OVERLAP Only in combination with the CLUSTER keyword.

CLUSTER

NCORE=1 (1-10)

NCORE=1 (11-20)

END_CLUSTER

When the NO-OVERLAP keyword is used, subsystems made from residues
1-10 only overlap with subsystems made from residues 1-10 and subsystems
made from residues 11-20 only overlap with subsystems made from residues
11-20. In other words, density matrix elements between subsystems 1-10 and
11-20 are zero.

3/3/06

Divcon Keywords Page 220

ATGRID do grid based, atom-wise subsetting (core and buffers will be build from
atoms).

RESGRID do grid based, residue-wise subsetting (core and buffers will be build from
residues).

MIXGRID do grid based, residue-wise subsetting for cores, grid based, atom-wise subset-
ting for buffers.

NOTE: Specify Grid parameters when a grid based subsetting is selected. The
syntax for these parameters is:

GRID

XCORE=4.0 YCORE=4.0 ZCORE=4.0 OVERLAP=0.5

DBUFF1=2.5 DBUFF2=1.0

END_GRID

Meaning that the total system will be divided into rectangular boxes of
4.0_4.0_4.0 ˜A that overlap 0.5 ˜A in each dimension. The first buffer region
is 2.5 ˜A wide, the second 1.0 ˜A.

NOTE: In Monte Carlo simulations only a residue-wise grid-based subsetting
scheme is allowed. Reason for this is rather subtle: Imagine that during the
MC-simulation a molecule would penetrate the box, such that the geometric
center is still inside the box, but some atoms are outside the box. If an atom
based subsetting was performed, the atoms outside the box wouldn’t be
included in any subsystem. Making the "grid-subsetting"-box artificially
larger than the pbc-box wouldn’t work either: in that case there’s is an artifi-
cially larger distance between the molecules and the (virtual, pbc) images of
other molecules. This would mean that some atoms will be skipped in making
the buffer regions: atoms that, according to their pbc-image should be
included. This will lead to non-optimal subsettings and can have a rather dras-
tic effect on energies as was found experimentally.

COMBSUB do a combination subsetting; certain residues will be subsetted grid based,
others cluster based. Use the combsub parameters to specify this subsetting:

COMBSUB

CLUSTER

1-10 13

RESGRID

11-12 14-20

END_COMBSUB

Here, cluster based subsetting will be done for residues 1-10 and 13, grid-
based residue-wise subsetting will be done for residues 11-12 and 14-20. The
cores of the subsystems will be selected from the specified residues, buffers
from all residues / atoms of the system. COMBSUB can only be defined as a

3/3/06

Divcon Keywords Page 221

combination of CLUSTER with one of RESGRID, ATGRID of MIXGRID.
Note that you have to specify the CLUSTER and GRID parameters when you
use COMBSUB. Note that all residues should be used (and only once) in
COMBSUB.

STANDARD standard closed-shell calculation (no divide and conquer). All subsetting
parameters are ignored, only one subsystem containing all atoms will be gen-
erated.

7.3.9. Nuclear Magnetic Resonance(NMR)
This section details the current NMR facilities found in the DivCon application. This func-

tionality is under active research and development.

NMR used to activate NMR functionality. The keyword will cause DivCon to per-
form an NMR shielding calculation on the atoms denated in the NMR param-
eters entry at the end of the divcon.in file. In the first example, the shielding
calculation will be performed on a number of atoms. In the second example
below the calculation will instead be performed on a residue basis.

Example 1:

NMR

Atom 1-100 150-255

END_NMR

Example 2:

NMR

Residue 1-10 12-34

Residue 40-45

END_NMR

CALNUC set what atoms chemical shifts are calculated for. CALNUC=1 for proton
chemical shift calculations CLANUC=2 for carbon-13 chemical shift calcula-
tions

7.3.10. Default Keywords
The keywords in the following section represent keywords on by default in DivCon and the

values that they are given when applicable. The sections above should be consulted for more
information on the keywords presented below.

ECRIT Default value=4.0e-6.

DCRIT Default value=5.0e-4.

3/3/06

Divcon Keywords Page 222

MAXIT Default value=100.

TEMPK Default value=1000.0.

ADDMM On by default.

RMIN Default value=0.5.

INTGLS Default setting is TALMAN.

7.4. Citation Information
Should you publish data generated using DivCon, please include references [183,184] , along
with the general citation:

B. Wang, K. Raha, N. Liao, M.B. Peters, H. Kim, L.M. Westerhoff, A. M. Wollacott,
A. van der Vaart, V. Gogonea, D. Suarez, S.L. Dixon, J.J. Vincent, E.N. Brothers and
K.M. Merz Jr., DivCon

When executing a pairwise energy decomposition calculation using the PWD module, add refer-
ences [189,190] ; when using the NMR module, you should add references [191-193].

3/3/06

PMEMD Page 223

8. PMEMD

8.1. Introduction.
PMEMD (Particle Mesh Ewald Molecular Dynamics) is a reimplementation of a subset of

sander functionality that has been written with the major goal of improving the performance of
the most frequently used methods of sander. In release 9, PMEMD supports Particle Mesh Ewald
simulations, Generalized Born simulations, and ALPB (Analytical Linearized Poisson-Boltz-
mann) simulations. The performance and scaling for PME simulations is typically significantly
better than that attained by sander. For Generalized Born and ALPB simulations, not much opti-
mization work has been done yet, and performance is slightly better on some platforms. For the
supported functionality, the input required and output produced are intended to exactly replicate
sander 9 within the limits of roundoff errors. PMEMD just runs more rapidly, scales better on
parallel processors using MPI, can be used profitably on significantly higher numbers of proces-
sors, and uses less resident memory. Dynamic memory allocation is used so memory configura-
tion is not required. PMEMD is ideal for molecular dynamics simulations of large solvated sys-
tems for long periods of time, especially if supercomputer resources are available. At time of
release, using pmemd on 320 processors of an IBM sp5 with 8 cpu’s/node, we attained max
throughputs for the factor ix benchmark (90,906 atoms, PME with 8 angstrom cutoff, 1.5 fsec
timestep) of 14.56 nsec/day (NPT ensemble) and 16.63 nsec/day (NVT ensemble).

PMEMD accepts Amber 9 sander input files (mdin, prmtop, inpcrd, refc), and is also back-
ward compatible in regard to input to the same extent as sander 9. All options documented in the
sander section of this manual should be properly parsed.

8.2. Functionality
As mentioned above, pmemd is not a complete implementation of sander 9. Instead, it is

intended to be a fast implementation of the functionality most likely to be used by someone doing
simulations on large solvated systems. We hav e also slightly improved generalized Born perfor-
mance, and will continue this effort in the future.

3/3/06

PMEMD Page 224

The following functionality is missing entirely:

1 imin = 5 In &ctrl. Trajectory analysis is not supported.

2 nmropt = 2 In &ctrl. A variety of NMR-specific options such as NOESY re-
straints, chemical shift restraints, pseudocontact restraints, and direct
dipolar coupling restraints are not supported.

3 idecomp != 0 In &ctrl. Energy decomposition options, used in conjunction with
mm_pbsa, are not supported.

4 ipol != 0 In &ctrl. Polarizable force field simulations are not supported.

5 igb == 10 In &ctrl. Poisson-Boltzmann simulations are not supported.

6 gbsa != 0 In &ctrl. GB/SA (generalized Born/surface area) simulations are not
supported.

7 In &ctrl. The new format for specifying frozen or restrained atoms,
which uses the restraint_wt, restraintmask, and bellymask options, is
not supported. This functionality is still supported through use of the
Amber 6/7 GROUP format instead.

8 ntmin > 2 In &ctrl. XMIN and LMOD minimization methods are not support-
ed.

9 isgld != 0 In &ctrl. Self-guided Langevin dynamics is not supported.

10 Water Caps Water cap simulations are not supported.

11 ips != 0 In &ctrl. Isotropic Periodic Sum simulations are not supported.

12 Extra Points PRMTOP files containing extra points data are not supported, and the
frameon option (in the &ewald namelist) should not be specified with
any value.

13 icfe != 0 In &ctrl. Calculation of free energies via thermodynamic integration
is not supported.

14 itgtmd != 0 In &ctrl. Targeted molecular dynamics is not supported.

15 ievb != 0 In &ctrl. Empirical Valence Bond methods are not supported.

16 ifqnt != 0 In &ctrl. QM/MM methods are not supported.

17 icnstph != 0 In &ctrl. Constant pH calculations are not supported.

3/3/06

PMEMD Page 225

18 &debugf namelist Use of the &debugf namelist and options it contains is not supported.
This functionality is nice for developers but not very useful for pro-
duction.

19 ineb != 0 In &ctrl. Nudged elastic band (NEB) calculations are not supported.
These calculations are done by sander.PIMD.

20 LES The Locally Enhanced Sampling method is not supported.

21 REM The Replica-Exchange method is not supported.

22 MMTSB The Replica Exchange using MMTSB method is not supported.

The following &ewald options are supported, but only with the indicated default values:

1 ew_type = 0 Only Particle Mesh Ewald calculations are supported. ew_type = 1
(regular Ewald calculations) must be done in sander 9.

2 nbflag = 1 The nbflag option is basically ignored, and all nonbonded list updates
are scheduled based on "skin" checks. This is more reliable and has
little cost. The variable nsnb still can be set and has an influence on
minimizations. For PME calculations, list building may also be sched-
uled based on heuristics to suit load balancing requirements in multi-
processor runs.

3 nbtell = 0 The nbtell option is not particularly useful and is ignored.

4 eedmeth = 1 Only a cubic spline switch function (eedmeth = 1) for the direct sum
Coulomb interaction is supported. This is the default, and most wide-
ly used setting for eedmeth. On some machine architectures, we actu-
ally spline energies and forces as a function of r**2 to a higher preci-
sion than the cubic spline switch. One consequence of only support-
ing eedmeth 1 is that vacuum simulations cannot be done (though
generalized Born nonperiodic simulations are available).

5 cutoff + skinnb >= 6.d0 In PMEMD an assumption is made that all nonbonded interaction ex-
cluded atoms will be found within a distance of cutoff + skinnb. To
insure that this is a safe assumption, a minimum length check on cut-
off + skinnb is made.

6 column_fft = 0 This is a sander-specific performance optimization option. PMEMD
uses different mechanisms to enhance performance, and ignores this
option.

I would strongly suggest that new PMEMD users simply take an existing sander 9 mdin file
and attempt a short 10-30 step run. The output will tell you whether or not PMEMD will handle
the particular problem at hand for all the functionality that is supported by "standard" sander. For

3/3/06

PMEMD Page 226

functionality that requires special builds of sander or sander-derived executables (NEB, LES,
REM, MMTSB), there will probably be failures in namelist parsing.

8.3. New variables
A minimum of new variables have been introduced into the mdin namelists in PMEMD.

The new variables are:

mdout_flush_interval
In &ctrl, this variable can be used to control the minimum time in integer seconds
between "flushes" of the mdout file. PMEMD DOES NOT use file flush() calls at
all because flush functionality does not work for all fortran compilers used in
building pmemd. Thus, pmemd does an open/close cycle on mdout at a default
minimum interval of 300 seconds. This interval can be changed with this vari-
able if desired in the range of 0-3600. If mdout_flush_interval is set to 0, then
mdout will be reopened and closed for each printed step. This functionality is
provided in pmemd because some large systems have such large file i/o buffers
that mdout will have 0 length on the disk through 100’s of psec of simulated
time. The default of 300 seconds provides a good compromise between effi-
ciency and being able to observe the progress of the simulation.

mdinfo_flush_interval
In &ctrl, this variable can be used to control the minimum time in integer seconds
between "flushes" of the mdinfo file. PMEMD DOES NOT use file flush() calls
at all because flush functionality does not work for all fortran compilers used in
building pmemd. Thus, pmemd does an open/close cycle on mdinfo at a default
minimum interval of 60 seconds. This interval can be changed with this variable
if desired in the range of 0-3600. Note that mdinfo under pmemd simply serves
as a heartbeat for the simulation at mdinfo_flush_interval, and mdinfo probably
will not be updated with the last step data at the end of a run. If
mdinfo_flush_interval is set to 0, then mdinfo will be reopened and closed for
each printed step.

es_cutoff, vdw_cutoff
In &ctrl, these variables can be used to control the cutoffs used for vdw and elec-
trostatic direct force interactions in PME calculations separately. If you specify
these variables, you should not specify the cut variable, and there is a require-
ment that vdw_cutoff >= es_cutoff. These were introduced anticipating the need
to support force fields where the direct force calculations are more expensive.
For the current force fields, one can get slightly improved performance and about
the same accuracy as one would get using a single cutoff. A good example
would be using vdw_cutoff=9.0, es_cutoff=8.0. For this scenario, one gets about
the accuracy in calculations associated with 9.0 angstrom cutoffs, but at a cost
intermediate between an 8.0 and a 9.0 angstrom cutoff.

use_axis_opt In &ewald. For parallel runs, the most favorable orientation of an orthogonal unit
cell is with the longest side in the Z direction. Starting with pmemd 3.00, we
were actually reorienting internal coordinates to take advantage of this, and in
high processor count runs on oblong unit cells, using axis optimization can

3/3/06

PMEMD Page 227

improve performance on the order of 10%. However, if a system has hotspots,
the results produced with axes oriented differently may vary by on the order of
0.05% relatively quickly. This effect has to do with the fact that axis optimiza-
tion changes the order of LOTS of operations and also the fft slab layout, and
under mpi if the system has serious hotspots, shake will come up with slightly
different coordinate sets. This is really only a problem in pathological situations,
and then it is probably mostly telling you that the situation is pathological, and
neither set of results is more correct (typically the ewald error term is also high).
In routine regression testing with over a dozen tests, axis reorientation has no
effect on results. Nonetheless, we have changed defaults recently to be in favor
of higher reproducibility of results. Now, axis optimization is only done for mpi
runs in which an orthogonal unit cell has an aspect ratio of at least 3 to 2. It is
turned off for all minimization runs and for runs in which velocities are random-
ized (ntt = 2 or 3). If you want to force axis optimization, you may set
use_axis_opt = 1 in the &ewald namelist. If you set it to 0, you will force it off
in scenarios where it would otherwise be used.

fft_grids_per_ang
In &ewald. This variable may be used to set the desired reciprocal space fft grid
density in terms of fft grids/angstrom. The nearest grid dimensions, given the
prime factors supported by the underlying fft implementation, that meet or
exceed this density will be used (ie., nfft1,2,3 are set based on this specification).
The default value is 1.0 grids/angstrom and gives very reasonable accuracy.
PMEMD is actually more stringent now than sander in that it will meet or exceed
the desired density instead of just approximating it. Thus, to get identical results
with sander, one may have to specify grid dimensions to be used with the
nfft1,2,3 variables.

Slightly changed functionality:

An I/O optimization has been introduced into PMEMD. The NTWR default value (fre-
quency of writing the restart file) has been modified such that the default minimum is 500 steps,
and this value is increased incrementally for multiprocessor runs. In general, frequent writes of
restrt, especially in runs with a high processor count, is wasteful. Also, if the mden file is being
written, it is always written as formatted output, regardless of the value of ioutfm. SANDER now
conforms to this convention regarding ioutfm and mden.

8.4. New command line options
The following command line options are new in pmemd 9:

-l <logfile name>
A name may now be assigned to the log file on the command line.

-suffix <output files suffix>
A suffix may now be appended, following a ".", to all the default output file
names for a pmemd run by simply entering the -suffix option. The suffix will
apply to mdout, restrt, mdcrd, mdvel, mden, mdinfo, and logfile names. How-
ev er, if an output file name is explicitly provided on the command line, the

3/3/06

PMEMD Page 228

provided name takes precedence. Entering "pmemd -suffix foo" will write mdout
output to mdout.foo, and so on. This provides an easy way to group output files
with minimal effort.

8.5. Some Performance Hints
Performance depends not only on proper setup of hardware and software, but also on mak-

ing good choices in simulation configuration. There are many tradeoffs between accuracy and
cost, as one might expect, and understanding all of these comes with experience. However, I
would like to suggest a couple of good choices for your simulations, if you have facilities where
you can routinely run at high processor count, say 32 processors or more. First of all, there is a
new implementation of binary trajectory files in pmemd and sander, based on the netCDF binary
file format. This is invoked now using ioutfm == 1, assuming you have built either pmemd or
sander with "bintraj" support. Using this output format, i/o from the master process will be more
efficient and your filesize will be about half what it would otherwise be. In Amber 9, ptraj can
read these new netCDF trajectory files, but if you want to visualize them you may have to wait
until viewers support the format. At really high processor count though, using this format can be
on the order of 10% more efficient than using the standard formatted trajectory output. Secondly,
other simulation packages standardly use respa methods as an efficiency measure. These methods
basically sample reciprocal space forces for PME less frequently. This can slightly improve per-
formance for pmemd at low processor count, but at higher processor counts using respa actually
makes loadbalancing difficult, and there can be a net loss of performance. If you wish to use
respa for pme simulations (done typically by setting nrespa to 2 or 4), then you should check
whether you actually get better performance. You may well not, and it will be at a cost of a loss
in accuracy. Using respa for generalized Born simulations is fine in all cases, however.

8.6. Installation
The build process for PMEMD is similar to the build process for the rest of Amber 9, but

must be invoked separately in the src/pmemd directory. There is a configure script that generates
a config.h header that is used in the build process. Generation of config.h files is dependendent
on use of information in the src/pmemd/config_data database. This system is similar to the old
Amber MACHINE files configuration system, but is a bit more automated in that the configure
script will set up config.h for a lot of common machine setups. The PMEMD installation process
has remained separate from the Amber 9 installation process because PMEMD does not support
all systems that can be automatically configured by Amber 9, and vice versa. Also, there is an
emphasis on performance in PMEMD, and there was a desire to be able to fine tune the optimiza-
tion process to a larger extent than was possible with the Amber 9 configuration process. Finally,
user definition of configuration files in the src/config_data database is a fairly simple process, and
this allows users to easily target new machines or machines with unusual configuration require-
ments. For more PMEMD installation details, please read src/pmemd/README.

8.7. Acknowledgements
This code was developed by Dr. Robert Duke of Prof. Lee Pedersen’s Lab at UNC-Chapel

Hill and Dr. Tom Darden’s Lab at NIEHS, starting from the version of sander in Amber 6. I
would like to thank Prof. Pedersen for his support in the development of this code, and would also
like to acknowledge funding support from NIH grant HL-06350 (PPG) and NSF grant

3/3/06

PMEMD Page 229

2001-0759-02 (ITR/AP). I would also like to acknowledge Drs. Lalith Perera and Divi
Venkateswarlu in the Pedersen Lab for helpful conversations and a willingness to actually use
early releases of PMEMD. Since Amber 8 shipped, continued support for development has also
come from Dr. Tom Darden and his laboratory at NIEHS in the form of intramural NIH funding.
Drs. Tom Darden, Lee Pedersen, Lalith Perera, Coray Colina and Chang Jun Lee have all been
helpful in providing suggestions and being willing to use early releases of pmemd 9. This work
has required the availability of large piles of processors of many different types. I would like to
thank UNC-Chapel Hill, the National Institute of Environmental Health Sciences, the Edinburgh
Parallel Computing Centre, the Pittsburgh Supercomputing Center, the National Energy Research
Scientific Computing Center, the National Center for Supercomputing Applications, the Center
for High Performance Computing at the University of Utah, the Scripps Research Institute, and
the Intel and SGI Parallel Application Center for making resources available that were used in the
development, test, and benchmarking of this software.

When citing PMEMD (Particle Mesh Ewald Molecular Dynamics) in the literature, please
use the Amber Version 9 citation given in the Amber 9 manual.

3/3/06

LES Page 230

9. LES
The LES functionality for sander and gibbs was written by Carlos Simmerling, based on his

thesis work and the experiences of the Elber group. It basically functions by modifying the prm-
top file using the program addles. The modified prmtop file is then used with a slightly modi-
fied version of sander called sander.LES.

Background material for LES can be found in Chapter 12.

9.1. Preparing to use LES with AMBER
The first decision that must be made is whether LES is an appropriate technique for the sys-

tem that you are studying. For further guidance, you may wish to consult published articles to see
where LES has proven useful in the past. Several examples will also be given at the end of this
section in order to provide models that you may wish to follow.

There are three main issues to consider before running the ADDLES module of AMBER.

(1) What should be copied?

(2) How many copies should be used?

(3) How many regions should be defined?

A brief summary of my experience with LES follows.

(1) You should make copies of flexible regions of interest. This sounds obvious, and in some
cases it is. If you are interested in determining the conformation of a protein loop, copy the loop
region. If you need to determine the position of a side chain in a protein after a single point muta-
tion, copy that side chain. If the entire biomolecule needs refinement, then copy the entire
molecule. Some other cases may not be obvious- you may need to decide how far away from a
particular site structural changes may propagate, and how far to extend the LES region.

(2) You should use as few copies as are necessary. While this doesn’t sound useful, it illus-
trates the general point--too few copies and you won’t get the full advantages of LES, and too
many will not only increase your system size unnecessarily but will also flatten the energy surface
to the point where minima are no longer well defined and a wide variety of structures become
populated. In addition, remember that LES is an approximation, and more copies make it more
approximate. Luckily, published articles that explore the sensitivity of the results to the number of
copies show that 3-10 copies are usually reasonable and provide similar results, with 5 copies
being a good place to start.

(3) Placing the divisions between regions can be the most difficult choice when using LES.
This is essentially a compromise between surface smoothing and copy independence. The most
effective surface-smoothing in LES takes places between LES regions. This is because Na copies
in region A interact with all Nb copies in region B, resulting in Na*Nb interactions, with each
scaled by 1/(Na*Nb) compared to the original interaction. This is better both from the statistics of
how many different versions of this interaction contribute to the LES average, and how much the
barriers are reduced. Remember that since the copies of a given region do not interact with differ-
ent copies of that same region, interactions inside a region are only scaled by 1/N.

The other thing to consider is whether these enhanced statistics are actually helpful. For
example, if the copies cannot move apart, you will obtain many copies of the same conforma-
tion--obviously not very helpful. This will also result in less effective reduction in barriers, since
the average energy barriers will be very similar to the non-average barrier. The independence of
the copies is also related to how the copies are attached. For example, different copies of an

3/3/06

LES Page 231

amino acid side chain are free to rotate independently (at least within restrictions imposed by the
surroundings and intrinsic potential) and therefore each side chain in the sequence could be
placed into a separate LES region. If you are interested in backbone motion, however, placing
each amino acid into a separate region is not the best choice. Each copy of a giv en amino acid
will be bonded to the neighbor residues on each side. This restriction means that the copies are
not very independent, since the endpoints for each copy need to be in nearly the same places. A
better choice is to use regions of 2-4 amino acids. As the regions get larger, each copy can start to
have more variety in conformation- for example, one segment may have some copies in a helical
conformation while others are more strand-like or turn-like. The general rule is that larger regions
are more independent, though you need to consider what types of motions you expect to see.

The best way to approach the division of the atoms that you wish to copy into regions is to
make sure that you have sev eral LES regions (unless you are copying a very small region such as
a short loop or a small ligand). This will ensure plenty of inter-copy averaging. Larger regions
permit wider variations in structure, but result in less surface smoothing. A subtle point should be
addressed here- the statistical improvement available with LES is not a benefit in all cases and
care must be taken in the choice of regions. For example, consider a ligand exiting a protein cav-
ity in which a side chain acts as a gate and needs to move before the ligand can escape. If we
make multiple copies of the gate, and do not copy the ligand, the ligand will interact in an average
way with the gates. If the gate was so large that even the softer copies can block the exit, then the
ligand would have to wait until ALL of the gate copies opened in order to exit. This may be more
statistically difficult than waiting for the original, single gate to open despite the reduced barriers.
Another way to envision this is to consider the ligand trying to escape against a true probability
distribution of the gate- if it was open 50% of the time and closed 50%, then the exit may still be
completely blocked. Continuum representations are therefore not always the best choice.

Specific examples will be given later to illustrate how these decisions can be made for a par-
ticular system.

9.2. Using the ADDLES program
The ADDLES module of AMBER is used to prepare input for simulations using LES. A

non-LES prmtop and prmcrd file are generated using a program such as LEaP. This prmtop file is
then given to ADDLES and replaced by a new prmtop file corresponding to the LES system. All
residues are left intact- copies of atoms are placed in the same residue as the original atom, so that
analysis based on sequence is preserved. Atom numbering is changed, but atom names are
unchanged, meaning that a given residue may have sev eral atoms with the same name. A different
program is available for taking this new topology file and splitting the copies apart into separate
residues, if desired. All copies are given the same coordinates as in the input coordinate file for
the non-LES system.

Using addles:

addles < inputfile > outputfile

SAMPLE INPUT FILE:

˜ a line beginning with ˜ is a comment line.

˜ all commands are 4 letters.

˜ the maximum line length is 80 characters;

˜ a trailing hyphen, "-", is the line continuation token.

3/3/06

LES Page 232

˜

˜ use ’file’ to specify an input/output file

˜ then the type of file

˜ ’rprm’ means this is the file to read the prmtop

˜ the ’read’ means it is an input file

˜

file rprm name=(solv2OO.topo) read

˜

˜ ’rcrd’ reads the original coordinates- optional, only if you want

˜ a set of coords for the new topology

˜ you can also use ’rcvd’ for coords+velocities, ’rcvb’ for coords,

˜ velos and box dimensions, ’rcbd’ for coords and box dimensions.

˜ use "pack=n" option to read in multiple sets of coordinates and

˜ assign different coordinates to different copies.

˜

file rcrd name=(501v200.coords) read

˜

˜ ’wprm’ is the new topology file to be written. the ’wovr’ means to

˜ write over the file if it exists, ’writ’ means don’t write over.

˜

file wprm name=(lesparm) wovr

˜

˜’wcrd is for writing coords, it will automatically write velo and box

˜ if they were read in by ’rcvd’ or ’rcvb’

˜

file wcrd name=(lescrd) wovr

˜

˜ now put ’action’ before creating the subspaces

˜

action

˜

˜ the default behavior is to scale masses by 1/N.

˜ omas leaves all masses at the original values

˜

omas

˜

˜ now we specify LES subspaces using the ’spac’ keyword, followed

˜ by the number of copies to make and then a pick command to tell which

˜ atom to copy for this subspace

˜ 3 copies of the fragment consisting of monomers 1 and 2

˜

spac numc=3 pick #mon 1 2 done

˜

˜ 3 copies of the fragment consisting of monomers 3 and 4

˜

spac numc=3 pick #mon 3 4 done

˜

˜ 3 copies of the fragment consisting of residues 5 and 6

˜

3/3/06

LES Page 233

spac numc=3 pick #mon 5 6 done

˜

˜ 2 copies of the side chain on residue 1

˜ note that this replaces each of the side chains ON EACH OF THE 3

˜ COPIES MADE ABOVE with 2 copies - net 6 copies

˜ each of the 3 copies of residue 1-2 has 2 side chain copies.

˜ the ’#sid’ command picks all atoms in the residue except

˜ C,O,CA,HA,N,H and HN.

˜

spac numc=2 pick #sid 1 1 done

spac numc=2 pick *sid 2 2 done

spac numc=2 pick #sid 3 3 done

spac numc=2 pick #sid 4 4 done

spac numc=2 pick #sid 5 5 done

˜

use the *EOD to end the input

*EOD

What this does: all of the force constants are scaled in the new prmtop file by 1/N for N
copies, so that this scaling does not need to be done for each pair during the nonbond calculation.
Charges and VDW epsilon values are also scaled. New bond, angle, torsion and atom types are
created. Any of the original types that were not used are discarded. Since each LES copy should
not interact with other copies of the SAME subspace, the other copies are placed in the exclusion
list. If you define very large LES regions, the exclusion list will get large and you may have trou-
ble with the fixed length for this entry in the prmtop file- currently 8 digits.

The coordinates are simply copied - that means that all of the LES copies initially occupy
the same positions in space. In this setup, the potential energy should be identical to the original
system- this is a good test to make sure everything is functioning properly. Do a single energy
evaluation of the LES system and the original system, using the copied coordinate file. All terms
should be nearly identical (to within machine precision and roundoff). With PME on non- neutral
systems, all charges are slightly modified to neutralize the system. For LES, there are a different
number of atoms than in the original system, and therefore this charge modification to each atom
will differ from the non-LES system and electrostatic energies will not match perfectly.

IMPORTANT: After creating the LES system, the copies will all feel the same forces, and
since the coordinates are identical, they will move together unless the initial velocities are differ-
ent. If you are initializing velocities using INIT=3 and TEMPI>0, this is not a problem. In order
to circumvent this problem, addles slightly (and randomly) modifies the copy velocities if they
were read from the coordinate input file. If the keyword "nomodv" is specified, the program will
leave all of the velocities in the same values as the original file. If you do not read velocities,
make sure to assign an initial non-zero temperature to the system. You should think about this and
change the behavior to suit your needs. In addition, the program scales the velocities by sqrt(N)
for N copies to maintain the correct thermal energy (˜mv2), but only when the masses are scaled
(not using omas option). Again, this requires some thought and you may want different behavior.
Regardless of what options are used for the velocities, further equilibration should be carried out.
These options are simple attempts to keep the system close to the original state [194].

Sometimes it is critical that different copies can have different initial coordinates (NEB for
example), this is why the option "pack" is added to command rcrd(rcvd,rcvb,rcbd). To use this
option, user need first concatenate different coordinates into a single file, and use "pack=n" to

3/3/06

LES Page 234

indicate how many sets of coordinates there are in the file, like the following example:

file rcrd name=(input.inpcrd) pack=4 read

Then addles will assign coordinates averagely. For example, if 4 sets coordinates exists in input
file, and 20 copies are generated, then copy 1-5 will have coordinate set 1, copy 6-10 will have
coordinates set 2, and so on. Note this option can’t work with multiple copy regions now.

It is important to understand that each subsequent pick command acts on the ORIGINAL
particle numbers. Making a copy of a giv en atom number also makes copies of all copies of that
atom that were already created. This was the simplest way to be able to have a hierarchical LES
setup, but you can’t make extra copies of part of one of the copies already made. I’m not sure
why you would want to, or if it is even correct to do so, but you should be warned. Copies can be
anything -spanning residues, copies of fragments already copied, non-contiguous fragments, etc.
Pay attention to the order in which you make the copies, and look carefully at the output to make
sure you get what you had in mind. Addles will provide a list at the end of all atoms, the original
parent atom, and how many copies were made.

There are array size limits in the file SIZE.h, I apologize in advance for the poor documen-
tation on these. Mail carlos.simmerling@stonybrook.edu if you have any questions or problems.

9.3. More information on the ADDLES commands and options

file: open a file, also use one of

rcrd: read coords from this file

rcvd: read coords + velo from file

rcvb: read coords, velo and box from file

wcrd: write coords (and more if rcvd, rcvb) to file

wprm: write new topology file

action: start run, all of the following options must come AFTER action

nomodv: do NOT slightly randomize the velocities of the copies

spac: add a new subspace definition, using a pick command (see below).

follow with numc=# pickcmd where # is the number of copies to make

and pickcmd is a pick command that selects the group of atoms

to copy.

omas: leave all masses at original values (otherwise scale 1/N)

pimd: write an prmtop file for PIMD simulation, which contains a much smaller non-bond

exclusion list, atoms from other copy will not be included in this non-bond

exclusion list.

Syntax for ’pick’ commands

Currently, the syntax for picking atoms is somewhat limited. Simple Boolean logic is fol-
lowed, but operations are carried out in order and parentheses are not allowed.

3/3/06

LES Page 235

#prt A B picks the atom range from A to B by atom number

#mon A B picks the residue range from A to B by residue number

#cca A B picks the residue range from A to B by residue number,

but dividing the residue between CA and C; the CO for A

is included, and the CO for monomer B is not. See

Simmerling and Elber, 1994 for an example of where this

can be useful.

chem prtc A picks all atoms named A, case sensitive

chem mono A picks all residues named A, case sensitive

Completion wildcards are acceptable for names: H* picks H, HA, etc. Note that H*2 will
select all atoms starting with H and ignore the 2.

Boolean logic:

| or atoms in either group are selected

& and atoms must be in both groups to be selected

!= not A != B will pick all atoms in A that are NOT in B

The user should carefully check the output file to ensure that the proper atoms were
selected.

Examples:

pick commandatoms selected

pick #mon 4 19 done all atoms in residues 4 through 19

pick #mon 1 50 & chem mono GLY done only GLY in residues 1 to 50

pick chem mono LYS | chem mono GLU done any GLU or LYS residue

pick #mon 1 5 != #prt 1 3 done residues 1 to 5 but not atoms 1 to 3

so, a full command to add a new subspace (LES region) with 4 copies of atoms 15 to 35 is:

spac numc=4 pick #prt 15 35 done

9.4. Using the new topology/coordinate files with SANDER
These topology files are ready to use in Sander with one exception: all of the FF parameters

have been scaled by 1/N for N copies. This is done to provide the energy of the new system as an
av erage of the energies of the individual copies (note that it is an average energy or force, not the
energy or force from an average copy coordinate). However, one additional correction is required
for interactions between pairs of atoms in the same LES region. Sander will make these correc-
tions for you, and this information is just to explain what is being done. For example, consider a
system where you make 2 copies of a sidechain in a protein. Each charge is scaled by 1/2. For
these atoms interacting with the rest of the system, each interaction is scaled by 1/2 and there are
2 such interactions. For a pair of particles inside the sub-space, however, the interaction is scaled
by 1/2*1/2=1/4, and since the copies do not interact, there are only 2 such interactions and the
sum does not correspond to the correct average. Therefore, the interaction must be scaled up by a

3/3/06

LES Page 236

factor of N. When the PME technique is requested, this simple scaling cannot be used since the
entire charge set is used in the construction of the PME grid and individual charges are not used
in the reciprocal space calculation. Therefore, the intra-copy energies and forces are corrected in a
separate step for PME calculations. Sander will print out the number of correction interactions
that need to be calculated, and very large amounts of these will make the calculation run more
slowly. PME also needs to do a separate correction calculation for excluded atom pairs (atoms
that should not have a nonbonded interaction, such as those that are connected by a bond). Large
LES regions result in large numbers of excluded atoms, and these will result in a larger computa-
tional penalty for LES compared to non-LES simulations. For both of these reasons, it is more
efficient computationally to use smaller LES regions- but see the discussion above for how region
size affects simulation efficiency. These changes are included in the LES version of Sander
(sander.LES). Each particle is assigned a LES ’type’ (each new set of copies is a new type), and
for each pair of types there is a scaling factor for the nonbond interactions between LES particles
of those types. Most of the scaling factors are 1.0, but some are not - such as the diagonal terms
which correspond to interactions inside a given subspace, and also off-diagonal terms where only
some of the copies are in common. An example of this type is the side chain example given
above- each of the 3 backbone copies has 2 sidechains, and while interactions inside the side
chains need a factor of 6, interactions between the side chain and backbone need a factor of 3.
This matrix of scaling factors is stored in the new topology file, along with the type for each
atom, and the number of types. The changes made in sander relate to reading and using these
scale factors.

9.5. Using LES with the Generalized Born solvation model
LES simulations can be performed using the GB solvent model, with some limitations. It is

strongly recommended that the user read the article describing the derivation of the GB+LES
approach [195]. The current code only allows igb=1 when using LES. Surface area calculations
are not yet supported with LES. Only a single LES region is permitted for GB+LES simulations.
A new namelist variable was introduced (RDT) in sander to control the compromise of speed and
accuracy for GB+LES simulations. The article referenced above provides more detail on the func-
tion of this variable. RDT is the effective radii deviation threshold. When using GB+LES, non-
LES atoms require multiple effective Born radii for an exact calculation. Using these multiple
radii can significantly increase calculation time required for GB calculations. When the difference
between the multiple radii for a non-LES atom is less than RDT, only a single effective radius
will be used. A value of 0.01 has been found to provide a reasonable compromise between speed
and accuracy, and is the default value.

9.6. Case studies: Examples of application of LES

9.6.1. Enhanced sampling for individual functional groups: Glucose.
The first example will deal with enhancing sampling for small parts of a molecule, such as

individual functional groups or protein side chains. In this case we wanted to carry out separate
simulations of α and β (not converting between anomers, only for conversions involving rotations
about bonds) glucose, but the 5 hydroxyl groups and the strong hydrogen bonds between neigh-
boring hydroxyls make conversion between different rotamers slow relative to affordable simula-
tion times. The eventual goal was to carry out free energy simulations converting between
anomers, but we need to ensure that each window during the Gibbs calculation would be able to

3/3/06

LES Page 237

sample all relevant orientations of hydroxyl groups in their proper Boltzmann-weighted popula-
tions. We were initially unsure how many different types of structures should be populated and
carried out non-LES simulations starting from different conformations. We found that transitions
between different conformations were separated by several hundred picoseconds, far too long to
expect converged populations during each window of the free energy calculation. We therefore
decided to enhance conformational sampling for each hydroxyl group by making 5 copies of each
hydroxyl hydrogen and also 5 copies of the entire hydroxymethyl group. Since the hydroxyl
rotamer for each copy should be relatively independent, we decided to place each group in a dif-
ferent LES region. This meant that each hydroxyl copy interacted with all copies of the neighbor-
ing groups, with a total of 5*5*5*5*5 or 3125 structural combinations contributing to the LES
av erage energy at each point in time. The input file is given below.

file rprm name=(parm.solv.top) read

file rcvb name=(glucose.solv.equ.crd) read

file wprm name=(les.prmtop) wovr

file wcrd name=(glucose.les.crd) wovr

action

˜

omas

˜

˜ 5 copies of each hydroxyl hydrogen- copying oxygen will make no difference

˜ since they will not be able to move significantly apart anyway

˜

spac numc=5 pick chem prtc HO1 done

spac numc=5 pick chem prtc HO2 done

spac numc=5 pick chem prtc HO3 done

spac numc=5 pick chem prtc HO4 done

˜

˜ take the entire hydroxy methyl group

˜

spac numc=5 pick #prt 20 24 done

*EOD

This worked quite well, with transitions now occurring every few ps and populations that
were essentially independent of initial conformation [196].

9.6.2. Enhanced sampling for a small region: Application of LES to a nucleic
acid loop

In this example, we consider a biomolecule (in this case a single RNA strand) for which part
of the structure is reliable and another part is potentially less accurate. This can be the case in a
number of different modeling situations, such as with homologous proteins or when the experi-
mental data is incomplete. In this case two different structures were available for the same RNA
sequence. While both structures were hairpins with a tetraloop, the loop conformations differed,
and one was more accurate. We tested whether MD would be able to show that one structure was
not stable and would convert to the other on an affordable timescale.

Standard MD simulations of several ns were not able to undergo any conversion between
these two structures (the initial structure was always retained). Since the stem portion of the RNA

3/3/06

LES Page 238

was considered to be accurate, LES was only applied to the tetraloop region. In this case, both of
the ends of the LES region would be attached to the same locations in space, and there was no
concern about copies diffusing too far apart to re-converge to the same positions after optimiza-
tion. The issues that need to be addressed once again are the number of copies to use, and how to
place the LES region(s). I usually start with the simplest choices and used 5 LES copies and only
a single LES region consisting of the entire loop. If each half of the loop was copied, then it
might become too crowded with copies near the base-pair hydrogen bonds and conformational
changes that required moving a base through this regions could become even more difficult (see
the background section for details). Therefore, one region was chosen, and the RNA stem, counte-
rions and solvent were not copied. The ADDLES input file is given below.

˜

file rprm name=(prm.top) read

file rcvb name=(rna.crd) read

file wprm name=(les.parm) wovr

file wcrd name=(les.crd) wovr

action

˜

omas

˜

˜ copy the UUCG loop region- residues 5 to 8.

˜ pick by atom number, though #mon 5 8 would work the same way

˜

spac numc=5 pick #prt 131 255 done

*EOD

Subsequent LES simulations were able to reproducibly convert from what was known to be
the incorrect structure to the correct one, and stay in the correct structure in simulations that
started there. Different numbers of LES copies as well as slightly changing the size of the LES
region (from 4 residues to 6, extending 1 residue beyond the loop on either side) were not found
to affect the results. Fewer copies still converted between structures, but on a slower timescale,
consistent with the barrier heights being reduced roughly proportional to the number of copies
used. See Simmerling, Miller and Kollman, 1998, for further details.

9.6.3. Improving conformational sampling in a small peptide
In this example, we were interested not just in improving sampling of small functional

groups or even individual atoms, but in the entire structure of a peptide. The peptide sequence is
AVPA, with ACE and NME terminal groups. Copying just the side chains might be helpful, but
would not dramatically reduce the barriers to backbone conformational changes, especially in this
case with so little conformational variety inherent in the Ala and Pro residues. We therefore apply
LES to all atoms. If we copied the entire peptide in 1 LES regions, the copies could float apart.
While this would not be a disaster, it would make it difficult to bring all of the copies back
together if we were searching for the global energy minimum, as described above. We therefore
use more than one LES region, and need to decide where to place the boundaries between
regions. A useful rule of thumb is that regions should be at least two amino acids in size, so we
pick our two regions as Ace-Ala-Val and Pro-Ala- Nme. If we make five LES copies of each
region and each copy does not interact with other copies of the same regions, each half the

3/3/06

LES Page 239

peptide will be represented by five potentially different conformations at each point in time. In
addition, since each copy interacts with all copies of the rest of the system, there are 25 different
combinations of the two halves of the peptide that contribute at each point in time. This statistical
improvement alone is valuable, but the corresponding barriers are also reduced by approximately
the same factors. When we place the peptide in a solvent box the solvent interacts in an average
way with each of the copies. The input file is given below, and all of the related files can be found
in the test directory for LES.

˜

˜ all file names are specified at the beginning, before "action"

˜

˜ specify input prmtop

˜

file rprm name=(prmtop) read

˜

˜ specify input coordinates, velocities and box (this is a restart file)

˜

file rcvb name=(md.solv.crd) read

˜

˜ specify LES prmtop

˜

file wprm name=(LES.prmtop) wovr

˜

˜ specify LES coordinates (and velocities and box since they

˜ were input)

˜

file wcrd name=(LES.crd) wovr

˜

˜ now the action command reads the files and tells addles to

˜ process commands

˜

action

˜

˜ do not scale masses of copied particles

˜

omas

˜

˜ divide the peptide into 2 regions.

˜ use the CCA option to place the division between carbonyl and

˜ alpha carbon

˜ use the "or" to make sure all atoms in the terminal residues

˜ are included since the CCA option places the region division at C/CA

˜ and we want all of the terminal residue included on each end

˜

˜ make 5 copies of each half

˜

˜ "spac" defines a LES subspace (or region)

˜

3/3/06

LES Page 240

spac numc=5 pick #cca 1 3 | #mon 1 1 done

˜

spac numc=5 pick #cca 4 6 | #mon 6 6 done

˜

˜ the following line is required at the end

*EOD

This example brings up several important questions:

(1) should I make LES copies before or after adding solvent? Since LEaP is used to add sol-
vent, and LEaP will not be able to load and understand a LES structure, you must run
ADDLES after you have solvated the peptide in LEaP. ADDLES should be the last step
before running SANDER.

(2) which structure should be used as input to ADDLES? If you will also be carrying out
non-LES simulations, then you can equilibrate the non-LES simulation and carry out any
amount of production simulation desired before taking the structure and running
ADDLES. At the point you may switch to only LES simulations, or continue both LES
and non-LES from the same point (using different versions of SANDER). Typically I
equilibrate my system without LES to ensure that it has initial stability and that every-
thing looks OK, then switch to LES afterward. This way I separate any potential problems
from incorrect LES setup from those arising from problems with the non-LES setup, such
as in initial coordinates, LEaP setup, solvent box dimensions and equilibration protocols.

(3) how can I analyze the resulting LES simulation? This is probably the most difficult part
of using LES. With all of the extra atoms, most programs will have difficulty. For exam-
ple, a given amino acid with LES will have multiple phi and psi backbone dihedral
angles. There are basically two options: first, you can process your trajectory such that
you obtain a single structure (non-LES). This might be just extracting one of the copies,
or it might be one by taking the average of the LES copies. After that, you can proceed to
traditional analysis but must keep in mind that the average structure may be non-physical
and may not represent any actual structure being sampled by the copies, especially if they
move apart significantly. A better way is to use LES-friendly analysis tools, such as those
developed in the group of Carlos Simmerling. The visualization program MOIL-View
(http://morita.chem.sunysb.edu/˜carlos/moil-view.html) is one example of these programs,
and has many analysis tools that are fully LES compatible. Read the program web page or
manual for more details. A version of MOIL-View is included on the Amber 8 CD.

9.7. Unresolved issues with LES in AMBER
(1) Sander can’t currently maintain groups of particles at different temperatures (important

for dynamics, less so for optimization.) [197,198] Users can set temp0les to maintain all
LES atoms at a temperature that is different from that for the system as a whole, but all
LES atoms are then coupled to the same bath.

(2) Initial velocity issues as mentioned above- works properly, user must be careful.

(3) Analysis programs may not be compatible. See http://morita.chem.sunysb.edu/˜car-
los/moil- view.html for an LES-friendly analysis and visualization program.

(4) Visualization can be difficult, especially with programs that use distance-based algorithms
to determine bonds. See #3 above.

3/3/06

LES Page 241

(5) Water should not be copied- the fast water routines have not been modified. For most
users this won’t matter.

(6) Copies should not span different ’molecules’ for pressure coupling and periodic imaging
issues. Copies of an entire ’molecule’ should result in the copies being placed in new, sep-
arate molecules- currently this is not done. This would include copying things such as
counterions and entire protein or nucleic acid chains.

(7) Copies are placed into the same residue as the original atoms- this can make some
residues much larger than others, and may result in less efficient parallelization with algo-
rithms that assign nonbond workload based on residue numbers.

3/3/06

ptraj Page 242

10. ptraj
The current version of ptraj is really two programs:

rdparm: a program to read, print (and modify) Amber prmtop files
usage: rdparm prmtop

ptraj: a program to process coordinates/trajectories
usage: ptraj prmtop script

Which code is used at runtime depends on the name of the executable (note that both
rdparm and ptraj are created by default from the same source code when the programs are com-
piled with the supplied Makefile). If the executable name contains the string "rdparm", then the
rdparm functionality is obtained. rdparm is semi-interactive (type ? or help for a list of com-
mands) and requires specification of an Amber prmtop file (this prmtop is specified as a filename
typed on the command line; note that if no filename is specified you will be prompted for a file-
name).

If the executable name does not contain the string "rdparm", ptraj is run instead. ptraj also
requires specification of parameter/topology information, however it currently supports both the
Amber prmtop format and (I know, sacrilege!) CHARMM psf files. Note that the ptraj program
can also be accessed from rdparm by typing ptraj.

The commands to ptraj can either be piped in through standard input or supplied in a file,
where the filename (script) is passed in as the second command line argument. Note that if the
prmtop filename is absent, the user will be prompted for a filename.

The code is written in ANSI compliant C and is fairly extensively documented and meant to
be extended by able users!. Along with this code is distributed public domain C code from the
Computer Graphics Lab at UCSF for reading and writing PDB files. Note that this program is
updated more frequently than the general Amber release and that new versions and documenta-
tion may be obtained through links on the Amber WWW page.

Usage: ptraj prmtop script

ptraj is a program to process and analyze sets of 3-D coordinates read in from a series of
input coordinate files (in various formats as discussed below). For each coordinate set read in, a
sequence of events or ACTIONS is performed (in the order specified) on each of the configura-
tions (set of coordinates) read in. After processing all the configurations, a trajectory file and
other supplementary data can be optionally written out.

To use the program it is necessary to (1) read in a parameter/topology file, (2) set up a list of
input coordinate files, (3) optionally specify an output file and (4) specify a series of actions to be
performed on each coordinate set read in.

(1) reading in a parameter/topology file:
This is done at startup and currently either an Amber prmtop or CHARMM psf file can be
read in. The type of the file is autodetected. The information in these files is used to setup the
global STATE (ptrajState *) which gives information about the number of atoms, residues,
atom names, residue names, residue boundaries, etc. This information is used to guide the
reading of input coordinates which MUST match the order specified by the state, otherwise
garbage may be obtained (although this may be detected by the program for some file

3/3/06

ptraj Page 243

formats, leading to a warning to the user). In other words, when reading a pdb file, the atom
order must correspond exactly to that of the parameter/topology information; in the pdb the
names/residues are ignored and only the coordinates are read in based.

(2) set up a list of input coordinate files:
This is done with the trajin command (described in more detail below) which specifies
the name of a coordinate file and optionally the start, stop and offset for reading coordinates.
The type of coordinate file is detected automatically and currently the following input coor-
dinate types are supported:

- Amber trajectory
- Amber restart (or inpcrd)
- PDB
- CHARMM (binary) trajectory
- Scripps "binpos" binary trajectory

(3) optionally specify an output trajectory file:
This is done with the trajout command (discussed in more detail below). Trajectories can
currently be written in Amber trajectory (default), Amber restrt, Scripps binpos, PDB or
CHARMM trajectory (in little or big endian binary format).

(4) specify a list of actions:
There are a variety of coordinate analysis/manipulation actions provided and each of these
specified-- note that each action can be repeated-- is applied sequentially to the coordinates
in the order listed by the user in the input file.

As mentioned above, input to ptraj is in the form of commands listed in a script (or if absent,
from text on standard input). An example input file to ptraj follows:

trajin traj1.Z 1 20

trajin traj2.Z 1 100

trajin restrt.Z

trajout fixed.traj

rms first out rms @CA,C,N

center :1-20

image

strip :WAT

go

This reads in three files of coordinates (which can be compressed and the type is autodetected), a
trajectory file is output (by default to Amber trajectory format), rms fitting is performed to the
first coordinate frame using atoms names CA, C and N (storing the RMSd values to a file named
"rms"), the center of geometry of residues 1-20 is placed at the origin, the coordinates are imaged
(which requires periodic boundary conditions) to move coordinates outside the periodic box back
in, and then the coordinates of all the residues named "WAT" are deleted.

10.1. ptraj command prerequisites
Before going into the details of each of the commands, some prerequisites are necessary to

describe the command flow and the standard argument types. Effectively, all the commands are

3/3/06

ptraj Page 244

processed from the input file in the order listed, except for the input/output commands. Input is
the first step and involves reading in all the coordinates sets from each file specified, in the order
specified, a single coordinate set at a time. For each coordinate set read in, all of the actions spec-
ified are applied and then the potentially modified coordinates are output. Not all of the actions
actually modify the coordinates and some of the commands simply change the state (such as sol-
vent which just changes the definition of what the solvent molecules are). Some of the actions
just accumulate data (such as distances, angles and sugar puckers). Writing out of any accumu-
lated data is deferred until all of the coordinate sets have been read in. Some of the actions load
up contiguous sets of coordinates into main memory; with large coordinate sets this may require
large amounts of memory. In these cases, such as with the command 2dRMS, it may be useful
only to "save" the necessary coordinates by performing a strip of unnecessary coordinates prior
to the 2dRMS call.

In the discussion that follows commands are listed in bold type. Words in italics are values
that need to be specified by the user, and words in standard text are keywords to specify an option
(which may or may not be followed by a value). In the specification of the commands, arguments
in square brackets ([]’s) are optional and the "|" character represents "or". Arguments that are
not in square brackets are required. In general, if there is an error in processing a particular
action, that action will be ignored and the user warned (rather than terminating the program), so
check the printed WARNING’s carefully... In what follows is listed a few standard argument
types:

mask: this is an atom or residue mask; it represents the list of active atoms. The current
parser recognizes a simplified midas style format for picking atoms and residues. The "@"
character represents an atom selection and the ":" character represents a residue selection.
Either the atom and residue names or numbers can be specified. The "-" character represents
a continuation. The "˜" represents "not" and in this naive implementation, if this character is
specified anywhere in the string, the "not" flag will be turned on. The "*" character is a wild
card and will match all the atoms if specified alone. When specified in atom or residue name
specifications, sometimes it will correctly work as a wildcard. The "?" character is also a
wildcard, however only one character is matched. Note that the current parser is not very
sophisticated. Until this is "fixed", check the output very carefully; note that whenever an
atom mask is used, a summary of the atoms selected is printed, so check this out...

filename: this refers to the full path to a file and note that no checking is done for existing
files, i.e. data will be overwritten if you attempt to write to an existing file.

10.2. ptraj input/output commands
trajin filename [start stop offset]

Load the trajectory file specified by filename using only the frames starting with
start (default 1) and ending with (and including) stop (default, the final configura-
tion) using an offset of offset (default 1) if specified. Amber trajectory, restrt/inpcrd,
PDB, Scripps BINPOS and CHARMM binary trajectory files are all currently sup-
ported and the type of file is auto-detected (including the CHARMM binary file byte
ordering). Compressed files (filenames with an appended .Z or .gz are also recog-
nized and treated appropriately). Note that the coordinates must match the
names/ordering of the parameter/topology information previously read in.

3/3/06

ptraj Page 245

reference filename

Load up a the first coordinate set from the trajectory specified by the file named file-
name and save this for use as a reference structure. Currently only the rms com-
mand potentially uses this reference structure. Note that as the state is modified (for
example by strip or closestwaters), the reference coordinates are also modified
internally.

trajout filename [format] [nobox] [little | big] [dumpq | parse] [nowrap] [les split|average]

Specify the name of the file of output coordinates to write (filename) and the format
(format). Currently supported formats are "trajectory" (or Amber trajectory, the
default), "restart" (Amber restart), "binpos" (Scripps binary format), "pdb" (PDB), or
"charmm" (CHARMM binary trajectory). With the CHARMM files, it is possible to
specify the byte ordering as "little" or "big" endian, with the default being that which
the first CHARMM trajectory file was read in as, or if none was read in, big endian.
With the PDB output, it is possible to include charges and radii in higher precision
temperature/occupancy columns with the additional keyword "dumpq" (to dump
Amber charges and radii, assuming a Amber prmtop has been previously read in) or
"parse" (to dump charges and parse radii). By default (and differing from earlier
versions of ptraj), atom names are wrapped in the PDB file to put the 4th letter of
the atom name first. If you want to avoid this behavior, specify "nowrap"; the for-
mer is more consistent with standard PDB usage but departs from the format written
in previous versions of this program. Note that if more than one coordinate set is to
be output, with the pdb and restrt/inpcrd formats, extensions (based on the current
configuration number) will be appended to the filenames and therefore only one
coordinate set will be written per file. The optional keyword "nobox" will prevent
box coordinates from being dumped to Amber trajectory files; this is useful if one is
stripping the solvent from a trajectory file and you don’t want that pesky box infor-
mation cluttering up the trajectory and messing with other programs... Note that if
periodic box information is present in the CHARMM trajectory file, when a new
CHARMM trajectory file is written (in versions > 22) the symmetric box informa-
tion will be *very* slightly different due to numerical issues in the diagonalization
procedure; this will not effect analysis but shows up if diffing the binary files. The
option keyword "les" is used for the analyze of LES trajectory, option "split" will
output P non-LES trajectory(P is copy number), and option "average" will output
one non- LES trajectory contain the averaged conformation, currently only single
LES region is allowed.

10.3. ptraj commands that modify the state
These commands change the state of the system, such as to delete atoms.

box [x value] [y value] [z value] [alpha value] [beta value] [gamma value]
[fixx] [fixy] [fixz] [fixalpha] [fixbeta] +[fixgamma]

This command allows specification and optionally fixing of the periodic box (unit
cell) dimensions. This can be useful when reading PDB files that do not contain box

3/3/06

ptraj Page 246

information. In the standard usage, without the "fixN" keywords, if the box informa-
tion is not already present in the input trajectory (such as the case with restart files or
trajectory files) this command can be used to set the default values that will be
applied. If you want to force a particular box size or shape, the "fixx", "fixy", etc
commands can be used to override any box information already present in the input
coordinate files.

solvent [byres | bytype | byname] mask1 [mask2] [mask3] ...

This command can be used to override the solvent information specified in the
Amber prmtop file or that which is set by default (based on residue name) upon
reading a CHARMM psf. Applying this command overwrites any previously set
solvent definitions. The solvent can be selected by residue with the "byres" modifier
using all the residues specified in the one or more atom masks listed. The byname
option searches for solvent by residue name (where the mask contains the name of
the residue), searching over all residues. The "bytype" option is intended for use in
selecting solvents that span multiple residues, however it is not yet implemented
since I haven’t found a case where it is necessary (and setting the solvent informa-
tion in the code is a real nightmare).

As an example, say you want to select the solvent to be all residues from 20-100,
then you would do

solvent byres :20-100

Note that if you don’t know the final residue number of your system offhand, yet
you do know that the solvent spans all residues starting at residue 20 until the end of
the system, just chose an upper bound and the program will reset accordingly, i.e.

solvent byres :20-9999

To select all residues named "WAT" and "TIP3" and "ST2":

solvent byname WAT TIP3 ST2

Note that if you just want to peruse what the current solvent information is (or more
generally get some information about the current state), specify solvent with no
arguments and a summary of the current state will be printed.

Other commands which also modify the state are strip and closestwaters. These
commands are described in the next section since they also modify the coordinates.

10.4. ptraj action commands
The following are commands that involve an action performed on each coordinate set as it is

read in. The commands are listed in alphabetical order. Note that in the script the commands are
applied in the order specified and some may change the overall state (more on this later). All of
the actions can be applied repeatedly. Note that in general (except where otherwise mentioned)
imaging in non-orthorhombic systems is now supported, however note that this code has not been

3/3/06

ptraj Page 247

extensively tested.

angle name mask1 mask2 mask3 [out filename] [time interval]

Calculate the angle between the three atoms listed, each specified in a mask, mask1
through mask3. If more than one atom is listed in each mask, then the center of
mass of the atoms in that mask is used at the position. The results are saved inter-
nally with the name name (which must be unique) on the scalarStack for later
processing (with the analyze command). Data will be dumped to a file named file-
name if "out" is specified (with a time interval between configurations of interval if
"time" is listed). All the angles are stored in degrees.

atomicfluct [out filename] [mask] [start start] [stop stop] [offset offset]
[byres | byatom | bymask] [bfactor]

Compute the atomic positional fluctuations for all the atoms; output is performed
only for the atoms in mask. If "byatom" is specified, dump the calculated fluctua-
tions by atom (default). If "byres" is specified, dump the average (mass-weighted)
for each residue. If "bymask" is specified, dump the average (mass-weighted) over
all the atoms in the original mask. If "out" is specified, the data will be dumped to
filename (otherwise the values will be dumped to the standard output). The "start",
"stop" and "offset" keywords can be used to specify the range of coordinates pro-
cessed (as a subset of all of those read in across all input files, not to be confused
with the individual specification in each trajin command). If the keyword "bfactor"
is specified, the data is output as B-factors rather than atomic positional fluctuations
(which simply means multiplying the results by (8/3)pi**2).

So, to dump the mass-weighted B-factors for the protein backbone atoms, by
residue:

atomicfluct out back.apf @C,CA,N byres bfactor

av erage filename [mask] [start start] [stop stop] [offset offset] [pdb [parse | dumpq]
[nowrap] | binpos | rest] [nobox] [stddev]

Compute the average structure over all the configurations read in (subject to start,
stop and offset if set) dumping the results to a file named filename. If the keyword
"stddev" is present, save the standard deviations (fluctuations) instead of the average
coordinates. Output is by default to an Amber trajectory, howev er can also be to a
pdb, binpos or restrt file (depending on the keyword chosen). The "nobox" keyword
will suppress box coordinates, and with the PDB format, it is possible to dump
charges and radii (with the "dumpq" keyword for Amber radii and charges or the
"parse" for parse radii and Amber charges) and prevent atom name wrapping
"nowrap". The optional mask trims the output coordinates (but does not change the
state). This command does not alter the coordinates as they are processed. If you
want to alter the coordinates by averaging (for use by actions further on), use the
runningaverage command.

3/3/06

ptraj Page 248

center [mask] [origin] [mass]

If we are in periodic boundary conditions, center all the atoms based on the center of
geometry of the atoms in the mask to the center of the periodic box or the origin if
the optional argument "origin" is specified. If the trajectory is not a periodic bound-
ary trajectory, then the molecule is implicitly centered to the origin. If no mask is
specified, centering is relative to all the atoms. If "mass" is specified, center with
respect to the center of mass instead.

checkoverlap [mask] [min value] [max value] [noimage]

Look for pair distances in the selected atoms (all by default) that are less than the
specified minimum value (in angstroms, 0.95 by default) apart or greater than the
maximum value (if specified). This command is rather computationally demanding,
particularly if imaging is turned on (by default), but it is extremely useful for diag-
nosing problems in input coordinates related to poor model building.

closest total mask [oxygen | first] [noimage]

Retain only total solvent molecules (using the solvent information specified, see sol-
vent above) in each coordinate set. The solvent molecules saved are those which are
closest to the atoms in the mask. If "oxygen" or "first" are specified, only the dis-
tance to the first atom in the solvent molecule (to each atom in the mask) is mea-
sured. This command is rather time consuming since many distances need to be
measured. Note that imaging is implicitly performed on the distances and this gets
extremely expensive in non-orthorhombic systems due to the need to possibly check
all the distances of the nearest images (up to 26!). Imaging can be disabled by speci-
fying the "noimage" keyword.

Note that the behavior of this command is slightly different than in previous ptraj
versions; now the solvent molecules are ordered at output such that the closest sol-
vent is first and the PDB file residue numbers no longer represent the identity of the
water in the original coordinate set. This command should now work with non-
sequential solvent molecules and be independent of where the water is located. Like
the strip command, this modifies the current state (i.e. pars down the size of the tra-
jectory which is useful in cases where subsets of a trajectory may be loaded into
memory). A restriction of this command is that each of the solvent molecules must
have the same number of atoms; this leads to a fixed size "configuration" in each
coordinate set output which is necessary for most of the file formats and to avoid
really complicating the code.

Of course, say you have two solvents of differing sizes and you want to perform
closest to each of these, this can be done sequentially. Say we have both ethanol
":ETH" and water ":WAT" present, and you want to save the closest 50 of each to
residues :1-20

solvent byres :WAT

closestwater 50 :1-20 first

3/3/06

ptraj Page 249

solvent byres :ETH

closestwater 50 :1-20 first

contacts [first|reference] [byresidue] [out filename] [time interval]
[distance cutoff] [mask]

For each atom given in mask, calculate the number of other atoms (contacts) within
the distance cutoff. The default cutoff is 7.0 A. Only atoms in mask are potential
interaction partners (e.g., a mask @CA will evaluate only contacts between CA
atoms). The results are dumped to filename if the keyword "out" is specified.
Thereby, the time between snapshots is taken to be interval. In addition to the num-
ber of overall contacts, the number of native contacts is also determined. Native con-
tacts are those that have been found either in the first snapshot of the trajectory (if
the keyword "first" is given) or in a reference structure (if the keyword "reference" is
given). Finally, if the keyword "byresidue" is provided, results are output on a per-
residue basis for each snapshot, whereby the number of native contacts is written to
filename.native .

dihedral name mask1 mask2 mask3 mask4 [out filename]

Calculated the dihedral angle for the four atoms listed in mask1 through mask4 (rep-
resenting rotation about the bond from mask2 to mask3). If more than one atom is
listed in each mask, treat the position of that atom as the center of mass of the atoms
in the mask. The results are saved internally with the name name (which must be
unique) and the data is stored on the scalarStack for later processing. Data will
be dumped to a file if "out" is specified (with a filename appended). All the angles
are listed in degrees.

diffusion mask time_per_frame [average] [filenameroot]

Compute a mean square displacement plot for the atoms in the mask. The time
between frames in picoseconds is specified by time_per_frame. If "av erage" is spec-
ified, then the average mean square displacement is calculated and dumped (only). If
"average" is not specified, then the average and individual mean squared displace-
ments are dumped. They are all dumped to a file in the format appropriate for xmgr
(dumped in multicolumn format if necessary, i.e. use xmgr -nxy). The units are dis-
placements (in angstroms**2) vs time (in ps). The filenameroot is used as the root of
the filename to be dumped. The average mean square displacements are dumped to
"filenameroot_r.xmgr", the x, y and z mean square displacements to "filename-
root_x.xmgr", etc and the total distance traveled to "filenameroot_a.xmgr".

This will fail if a coordinate moves more than 1/2 the box in a single step. Also, this
command implicitly unfolds the trajectory (in periodic boundary simulations) hence
will currently only work with orthorhombic unit cells.

dipole filename nx x_spacing ny y_spacing nz z_spacing mask1 origin | box [max max_percent]

3/3/06

ptraj Page 250

Same as grid (see below) except that dipoles of the solvent molecules are binned.
Dumping is to a grid in a format for Chris Bayly’s discern delegate program that
comes with Midas/Plus.

distance name mask1 mask2 [out filename] [noimage]

This command will calculate a distance between the center of mass of the atoms in
mask1 to the center of mass of the atoms in mask2 and store this information into an
array with name as the identifier (a name which must be unique and which is placed
on the scalarStack for later processing) for each frame in the trajectory. If the
optional keyword "out" is specified, then the data is dumped to a file named file-
name. The distance is implicitly imaged (for both orthorhombic and non-
orthorhombic unit cells) and the shortest imaged distance will be saved (unless the
"noimage" keyword is specified which disables imaging).

tion]
grid filename nx x_spacing ny y_spacing nz z_spacing mask1 [origin | box] [negative] [max frac-

Create a grid representing the histogram of atoms in mask1 on the 3D grid that is "nx
* x_spacing by ny * y_spacing by nz * z_spacing angstroms (cubed). Either "origin"
or "box" can be specified and this states whether the grid is centered on the origin or
half box. Note that to provide any meaningful representation of the density, the
solute of interest (about which the atomic densities are binned) should be rms fit,
centered and imaged prior to the grid call. If the optional keyword "negative" is also
specified, then these density will be stored as negative numbers. Output is in the for-
mat of a XPLOR formatted contour file (which can be visualized by the density del-
eg ate to Midas/Plus or other programs). Upon dumping the file, pseudo-pdb HET-
ATM records are also dumped to standard out which have the most probable grid
entries (those that are 80% of the maximum by default which can be changed with
the max keyword, i.e. max .5 makes the dumping at 50% of the maximum).

Note that as currently implemented, since the XPLOR grids are integer based, the
grid is offset from the origin (towards the negative size) by half the grid spacing.

image [origin] [center] mask [bymol | byres | byatom | bymask] mask
[triclinic | familiar [com mask]]

Under periodic boundary conditions, which particular unit cell a given molecule is in
does not matter as long as, as a whole, all the molecules "image" into a single unit
cell. In an MD simulation, molecules drift over time and may span multiple periodic
cells unless "imaging" is enabled to shift molecules that leave back into the primary
unit cell. In sander, the IWRAP variable controls this, with IWRAP=1 implying
turning on imaging. This command, image allows post-processing of the imaging to
force all the molecules into the primary unit cell.

If the optional argument "origin" is specified, then imaging will occur to the coordi-
nate origin (like in SPASMS) rather than the center of the box (as is the Amber stan-
dard). By default all atoms are imaged by molecule based on the position of the first

3/3/06

ptraj Page 251

atom (or the center of mass of the molecule if "center" is specified; the latter is rec-
ommended). If the mask is specified, only the atoms in the mask will be imaged. It is
now possible to image by atom (byatom), by residue (byres), by molecule (bymol,
default) or by atom mask (where all the atoms in the mask are treated as belonging
to a single molecule). The behavior of the "by molecule" imaging is different in
CHARMM and Amber; with Amber the molecules are specified directly by the peri-
odic box information whereas with the CHARMM parameter/topology, each segid is
treated as a different molecule. With this newer implementation of the imaging code,
it is possible to avoid breaking up double stranded DNA during imaging, i.e.:

image :1-20 bymask :1-20

image byres :WAT

[Of course this assumes that the coordinates of the two strands were not displaced
during the dynamics as well!] Imaging only makes sense if there is periodic box
information present.

Non-orthorhombic unit cells are now supported! Use of the triclinic imaging can be
forced with the "triclinic" keyword. Note that this puts the box into the triclinic
shape, not the more familiar, more spherical shapes one might expect for some of the
unit cells (i.e. truncated octahedron). To get into the more familiar shape, specify
the "familiar" keyword. In this case, to specify atoms that imaged molecules should
be closest to, specify a center of the atoms in the mask specified with the "com"
keyword. Note that imaging "familiar" is time consuming (but recommended) since
each of the possible imaged distances (27) are checked to see which is closest to the
center.

principal mask [dorotation]

Principal axis transformation to align the atoms specified in mask. This is reason-
ably functional as there are still issues with degenerate eigenvalues and unwanted
coordinate swapping. To align whole system along the principal axes specify "doro-
tation".

pucker name mask1 mask2 mask3 mask4 mask5 [out filename] [amplitude]
[altona | cremer] [offset offset]

Calculate the pucker for the five atoms specified in each of the mask’s, mask1
through mask5, associating name (which must be unique) with the calculated values.
If more than one atom is specified in a given mask, the center of mass of all the
atoms in that mask is used to define the position. If the "out" keyword is specified
the data is dumped to filename. If the keyword "amplitude" is present, the ampli-
tudes are saved rather than the pseudorotation values. If the keyword "altona" is
listed, use the Altona & Sundarlingam conventions/algorithm (for nucleic acids) (the
default) [see Altona & Sundaralingam, JA CS 94, 8205-8212 (1972) or Harvey &
Prabhakaran, JA CS 108, 6128-6136 (1986).] In this convention, both the pseudoro-
tation phase and amplitude are in degrees.

3/3/06

ptraj Page 252

If "cremer" is specified, use the Cremer & Pople conventions/algorithm [see Cremer
& Pople, JA CS 97:6, 1354-1358 (1975).]

Note that to calculate nucleic acid puckers, specify C1’ first, followed by C2’, C3’,
C4’ and finally O4’. Also note that the Cremer & Pople convention is offset from
the Altona & Sundarlingam convention (with nucleic acids) by 90.0; to add in an
extra 90.0 to "cremer" (offset -90.0) or subtract 90.0 from the "Altona" (offset 90.0)
specify an offset with the offset keyword; this value is subtracted from the calculated
pseudorotation value (or amplitude).

radial root-filename spacing maximum solvent-mask [solute-mask] [closest]
[density value] [noimage]

Compute radial distribution functions and store the results into files with root-file-
name as the root of the filename. Three files are currently produced, "root-file-
name_carnal.xmgr" (which corresponds to a carnal style RDF), "root-filename_stan-
dard.xmgr" (which uses the more traditional RDF with a density input by the user)
and "root-filename_volume.xmgr" (which uses the more traditional RDF and the
av erage volume of the system). The total number of bins for the histogram is deter-
mined by the spacing between bins (spacing) and the range which runs from zero to
maximum. If only a solvent-mask is listed (i.e. a list of atoms) then the RDF will be
calculated for the interaction of every solute-mask atom with ALL the other solute-
mask atoms.

If the optional solute-mask is specified, then the RDF will represent the interaction
of each solute-mask atom with ALL of the solvent-mask atoms. If the optional
keyword "closest" is specified, then the histogram will bin, over all the solvent-mask
atoms, the distance of the closest atom in the solute mask. If the solute-mask and
solvent-mask atoms are not mutually exclusive, zero distances will be binned
(although this should not break the code). If the optional keyword "density", fol-
lowed by the density value is specified, this will be used in the calculations. The
default value is 0.033456 molecules/angstrom**3 which corresponds to a density of
water equal to 1.0 g/mL. To convert a standard density in g/mL, multiply the density
by "6.022 / (10 * weight)" where "weight" is the mass of the molecule in atomic
mass units. This will only effect the "root-filename_standard.xmgr" file.

Note that although imaging of distances is performed (to find the shortest imaged
distance unless the "noimage" keyword is specified), minimum image conventions
are applied.

Also note that when LES prmtop and trajectories is processed, the interaction
between atoms from different copy is ignored, which allowes users to get the right
RDF, but users still need to adjust the density to get the right answer.

radgyr [out filename] [time interval] [mask]

Calculate the radius of gyration considering atoms in mask. The results are dumped
to filename if the keyword "out" is specified. Thereby, the time between snapshots is

3/3/06

ptraj Page 253

taken to be interval.

rms mode [mass] [out filename] [time interval] mask [name name] [nofit]

This will RMS fit all the atoms in the mask based on the current mode which is:

previous: fit to previous frame
first: fit to the "start" frame of the first trajectory specified.
reference: fit to a the reference structure (which must have been previously read

in)

If the keyword "mass" is specified, then a mass-weighted RMSd will be performed.
If the keyword "out" is specified (followed immediately by a filename), the RMSd
values will be dumped to a file. If you want to specify an time interval between
frames (used only when dumping the RMSd vs time), this can be done with the
"time" keyword. To sav e the calculated values for later processing, associate a name
with the "name" keyword (where the chosen name must be unique and the data will
be stored on the scalarStack for later processing. If the keyword "nofit" is spec-
ified, then the coordinates are not modified, just the RMSd values are calculated (and
stored or output if the name or out keywords were specified).

secstruct [out filename] [time interval] [mask]
Calculate the secondary structure information for residues of atoms contained in
mask, following the DSSP method by Kabsch & Sander. The mask is primarily
intended to strip water molecules etc. Not providing contiguous protein sequences
may result in erroneous secondary structure assignments (even at residues that are
included in the mask!). The results are dumped to filename if the keyword "out" is
specified. Thereby, the time between snapshots is taken to be interval. For every
snapshot and every residue, an alpha-helix is indicated by "H", a 3-10-helix by "G",
a pi-helix by "I", a parallel beta-sheet by "b", and an antiparallel beta-sheet by "B".
A summary providing the percentage for each residue to adopt one of the above sec-
ondary structure types over the course of the analyzed snapshots is given in file-
name.sum.

strip mask Strip all atoms matching the atoms in mask. This changes the state of the system
such that all commands (actions) following the strip (including output of the coordi-
nates which is done last) are performed on the stripped coordinates (i.e. if you strip
all the waters and then on a later action try to do something with the waters, you will
have trouble since the waters are gone). A benefit of stripping, beyong paring down
trajectories is with the data intensive commands that read entire sections of the tra-
jectory into memory; with the strip to retain only selected atoms, it is much less
likely that you will blow memory.

translate mask [x x-value] [y y-value] [z z-value]

Move the coordinates for the atoms in the mask in each direction by the offset(s)
specified.

3/3/06

ptraj Page 254

truncoct mask distance [prmtop filename]

Create a truncated octahedron box with solvent stripped to a distance distance aw ay
from the atoms in the mask. Coordinates are output to the trajectory specified with
the trajout command. Note that this is a special command and will only really
make sense if a single coordinate set is processed (i.e. any prmtop written out will
only correspond to the first configuration!) and commands after the truncoct will
have undefined behavior since the state will not be consistent with the modified
coordinates. It is intended only as an aid for creating truncated octahedron restrt
files for running in Amber.

The "prmtop" keyword can be used to specify the writing of a new prmtop (to a file
named filename; this prmtop is only consistent with the first set of coordinates writ-
ten. Moreover, this command will only work with Amber prmtop files and assumes
an Amber prmtop file has previously been read in (rather than a CHARMM PSF).
This command also assumes that all the solvent is located contiguously at the end of
the file and that the solvent information has previously been set (see the solvent
command).

watershell mask filename [lower lower upper upper] [solvent-mask] [noimage]

This option will count the number of waters within a certain distance of the atoms in
the mask in order to represent the first and second solvation shells. The output is a
file into filename (appropriate for xmgr) which has, on each line, the frame number,
number of waters in the first shell and number of waters in the second shell. If lower
is specified, this represents the distance from the mask which represents the first sol-
vation shell; if this is absent 3.4 angstroms is assumed. Likewise, upper represents
the range of the second solvation shell and if absent is assumed to be 5.0 angstroms.
The optional solvent-mask can be used to consider other atoms as the solvent; the
default is ":WAT". Imaging on the distances is done implicitly unless the "noimage"
keyword has been specified.

10.5. Correlation and fluctuation facility
The ptraj program now contains several related sets of commands to analyze correlations

and fluctuations, both from trajectories and from normal modes. These items replace the correla-
tion command in previous versions of ptraj, and also replace what used to be done in the nmanal
program. Some examples of command sequences are given at the end of this section.

vector name mask [principal [x|y|z] | dipole | box | corrplane | ired mask2 |
corr mask2 | corrired mask2] [out filename] [order order] [modes modesfile] [beg
beg] [end end] [npair npair]

This command will keep track of a vector value (and its origin) over the trajectory;
the data can be referenced for later use based on the name (which must be unique
among the vector specifications). "Ired" vectors, however, may only be used in con-
nection with the command "matrix ired". If the optional keyword "out" is specified
(not valid for "ired" vectors), the data will be dumped to the file named filename.

3/3/06

ptraj Page 255

The format is frame number, followed by the value of the vector, the reference point,
and the reference point plus the vector. What kind of vector is stored depends on the
keyword chosen.

principal [x | y | z]: store one of the principal axis vectors determined by diagonal-
ization of the intertia matrix from the coordinates of the atoms specified by the mask.
If none of x | y | z are specified, then the principal axis (i.e. the eigenvector associ-
ated with the largest eigenvalue) is stored. The eigenvector with the largest eigen-
value is "x" (i.e. the hardest axis to rotate around) and the eigenvector with the
smallest eigenvalue is "z" and if one of x | y | z are specified, that eigenvector will be
dumped. The reference point for the vector is the center of mass of the mask atoms.

dipole: store the dipole and center of mass of the atoms specified in the mask. The
vector is not converted to appropriate units, nor is the value well-defined if the atoms
in the mask are not overall charge neutral.

box: store the box coordinates of the trajectory. The reference point is the origin or
(0.0, 0.0, 0.0).

ired mask2: This defines ired vectors necessary to compute an ired matrix (see
matrix command). The vectors must be defined prior to the matrix command.

corrplane: This defines a vector perpendicular to the (least-squares best) plane
through a series of atoms given in mask, for which a time correlation function can be
calculated subsequently with the command "analyze timecorr ...". order specifies the
order of the Legendre polynomial used (0 <= order <= 2). It defaults to 2.

corr mask2: This defines a vector between the center of mass of mask and the one of
mask2, for which a time correlation function can be calculated subsequently with the
command "analyze timecorr ...". order specifies the order of the Legendre polyno-
mial used (0 <= order <= 2). It defaults to 2.

corrired mask2: This defines a vector between the center of mass of mask and the
one of mask2, for which a time correlation function according to the Isotropic Reori-
entational Eigenmode Dynamics (ired) approach [199] can be calculated. order
specifies the order of the Legendre polynomial used (0 <= order <= 2). It defaults to
2. To calculate this vector, ired modes need to be provided by modesfile. They can
be calculated by the commands "matrix ired ...", followed by "analyze matrix ...".
Only modes <beg> to <end> are considered. Default is beg = 1, end = 50. To obtain
meaningful results, it is important that the vector definition agrees with the one used
for calculation of the ired matrix (there is no internal check for this). Along these
lines, npair needs to be specified, which relates to the position of this definition in
the sequence of ired (not corrired!) vectors used to obtain the ired matrix.

matrix dist | covar | mwcovar | distcovar | correl | idea | ired [name name] [order order]
[mask1] [mask2] [out filename]" [start start] [stop stop] [offset offset] [byatom |
byres | bymask] [mass]

Compute DISTance, COVARiance, Mass-Weighted COVARiance, CORRELation,

3/3/06

ptraj Page 256

DISTance-COVARiance, Isotropically Distributed Ensemble Analysis [200], or
Isotropic Reorientational Eigenmode Dynamics [199] matrices. Results are output
to filename if given. Be aware, matrix dimension will be of the order of N x M for
dist, correl, idea, and ired, 3N x 3M for covar and mwcovar, and N(N-1) x N(N-1) /
4 for distcovar (with N being the number of atoms in mask1 and M being the number
of atoms either in mask1 or mask2).

"byatom" dumps the results by atom (default). This is the sole option for covar,
mwcovar, distcovar, idea, and ired. In the case of dist or correl, "byres" calculates an
av erage for each residue and "bymask" dumps the average over all atoms in the
mask(s). With "mass", mass-weighted averages will be computed.

In the case of ired, mask information must not be given. Instead, "ired vectors" need
to be defined prior to the matrix command by using the vector command. Other-
wise, if no mask is given, all atoms against all are used. If only mask1 is given, a
symmetric matrix is computed. In the case of distcovar and idea, only mask1 (or
none) may be given. In the case of distcovar, mwcovar, and correl, if mask1 and
mask2 is given, on output mask1 atoms are listed column-wise while mask2 atoms
are listed row-wise. The number of atoms covered by mask1 must be >= the number
of atoms covered by mask2 (this is also checked in the function).

The matrix may be stored internally on the matrixStack with the name name for lat-
ter processing (with the "analyze matrix" command). Since at the moment this only
involves diagonalization, storing is only available for (symmetric) matrices gener-
ated with mask1 (or no mask or ired matrices).

The start, stop, and offset parameters can be used to specify the range of coordinates
processed (as a subset of all of those read in across all input files).

The order parameter chooses the order of the Legendre polynomial used to calculate
the ired matrix.

analyze matrix matrixname [out filename] [thermo] [vecs vecs] [reduce]

Diagonalizes the matrix matrixname, which has been generated and stored before by
the matrix command. This is followed by Principal Component Analysis (in carte-
sian coordinate space in the case of a covariance matrix or in distance space in the
case of a distance-covariance matrix), or Quasiharmonic Analysis (in the case of a
mass-weighted covariance matrix). Diagonalization of distance, correlation, idea,
and ired matrices are also possible. Eigenvalues are given in cm−1 in the case of a
mass-weighted covariance matrix and in the units of the matrix elements in all other
cases. In the case of a mass-weighted covariance matrix, the eigenvectors are mass-
weighted.

Results [average coordinates (in the case of covar, mwcovar, correl), average dis-
tances (in the case of distcovar), main diagonal elements (in the case of idea and
ired), eigenvalues, eigenvectors] are output to filename. vecs determines, how many
eigenvectors and eigenvalues are calculated. The value must be >= 1, except if the
"thermo" flag is given (see below). In that case, setting vecs = 0 results in

3/3/06

ptraj Page 257

calculating all eigenvalues, but no eigenvectors. This option is mainly intended for
saving memory in the case of thermodynamic calculations. "reduce" (only possible
for covar, mwcovar, and distcovar) results in reduced eigenvectors [Abseher &
Nilges, J. Mol. Biol. 279, 911, (1998)]. They may be used to compare results from
PCA in distance space with those from PCA in cartesian-coordinate space.

"thermo" calculates entropy, heat capacity, and internal energy from the structure of
a molecule (average coordinates, see above) and its vibrational frequencies using
standard statistical mechanical formulas for an ideal gas. This option is only avail-
able for mwcovar matrices.

analyze modes fluct|displ|corr stack stackname | file filename
[beg beg] [end end] [bose] [factor factor] [out outfile] [maskp mask1 mask2 [...]]

Calculates rms fluctuations ("fluct"), displacements of cartesian coordinates along
mode directions ("displ"), or dipole-dipole correlation functions ("corr") for modes
obtained from principal component analyses (of covariance matrices) or quasihar-
monic analyses (of mass-weighted covariance matrices). Thus, a possible series of
commands would be "matrix covar|mwcovar ..." to generate the matrix, "analyze
matrix ..." to calculate the modes, and, finally, "analyze modes ...". Modes can be
taken either from an internal stack, identified by their name on the stack, stackname,
or can be read from a file filename. Only modes beg to end are considered. Default
for beg is 7 (which skips the first 6 zero-frequency modes in the case of a normal
mode analysis); for end it is 50. If "bose" is given, quantum (Bose) statistics is used
in populating the modes. By default, classical (Boltzmann) statistics is used. factor
is used as multiplicative constant on the amplitude of displacement. Default is factor
= 1. Results are written to outfile, if specified, otherwise to stdout. In the case of
"corr", pairs of atom masks (mask1, mask2; each pair preceded by "maskp" and each
mask defining only a single atom) have to be giv en that specify the atoms for which
the correlation functions are desired.

analyze timecorr vec1 vecname1 vec2 vecname2 [tstep tstep] [tcorr tcorr]
[drct] [dplr] [norm] out filename

Calculates time correlation functions for vectors vecname1 (vecname2) of type
"corr" or "corrired", using a fast Fourier method. If two different vectors are speci-
fied for "vec1" and "vec2", a cross-correlation function is calculated; if the two vec-
tors are the same, the result is an autocorrelation function. If the drct keyword is
given, a direct approach is used instead of the FFT approach. Note that this is less
efficient than the FFT route. If dplr is given, in addition to the Pl correlation func-
tion, also correlation functions Cl ≡ < Pl /(r(t)3r(t + τ)3) > and < 1/(r(t)3r(t + τ)3) >
are output. If norm is given, all correlation functions are normalized, i.e. Pl(t = 0) =
Cl(t = 0) = 1/(r(t)3r(t)3)(t = 0) = 1.0. Results are written to filename. tstep specifies
the time between snapshots (default: 1.0), and tcorr denotes the maximum time for
which the correlations functions are to be computed (default: 10000.0).

projection modes modesfile out outfile [beg beg] [end end] [mask]
[start start] [stop stop] [offset offset]

3/3/06

ptraj Page 258

Projects snapshots onto modes obtained by diagonalizing covariance or mass-
weighted covariance matrices. The modes are read from modesfile. The results are
written to outfile. Only modes beg to end are considered. Default values are beg = 1,
end = 2. mask specifies the atoms that will be projected. The user has to make sure
that these atoms agree with the ones used to calculate the modes (i.e., if mask1 =
@CA was used in the "matrix" command, mask = @CA needs to be set here as
well). The start, stop, and offset parameters can be used to specify the range of coor-
dinates processed (as a subset of all of those read in across all input files).

10.6. Examples
Please note that in most cases the trajectory needs to be aligned against a reference structure

to obtain meaningful results. Use the "rms" command for this.

Calculating and analyzing matrices and modes

As a simple example, a distance matrix of all CA atoms is generated and output to
distmat.dat.

matrix dist @CA out distmat.dat

In the following, a mass-weighted covariance matrix of all atoms is generated and
stored internally with the name mwcvmat (as well as output). Subsequently, the
matrix is analyzed by performing a quasiharmonic analysis, whereby 5 eigenvectors
and eigenvalues are calculated and output to evecs.dat.

matrix mwcovar name mwcvmat out mwcvmat.dat

analyze matrix mwcvmat out evecs.dat vecs 5

Alternatively, the eigenvectors can be stored internally and used for calculating rms
fluctuations or displacements of cartesian coordinates.

analyze matrix mwcvmat name evecs vecs 5

analyze modes fluct out rmsfluct.dat stack evecs beg 1 end 3

analyze modes displ out resdispl.dat stack evecs beg 1 end 3

Finally, dipole-dipole correlation functions for modes obtained from principle com-
ponent analysis or quasiharmonic analysis can be computed.

analyze modes corr out cffromvec.dat stack evecs beg 1 end 3 ...

... maskp @1 @2 maskp @3 @4 maskp @5 @6

Projecting snapshots onto modes

After calculating modes, snapshots can be projected onto these in an additional
"sweep" through the trajectory. Here, snapshots are projected onto modes 1 and 2
read from evecs.dat (which have been obtained by the "matrix mwcovar", "analyze

3/3/06

ptraj Page 259

matrix" commands from above).

projection modes evecs.dat out project.dat beg 1 end 2

Calculating time correlation functions

Vectors between atoms 5 and 6 as well as 7 and 8 are calculated below, for which
auto and cross time correlation functions are obtained.

vector v0 @5 corr @6 order 2

vector v1 @7 corr @8 order 2

analyze timecorr vec1 v0 tstep 1.0 tcorr 100.0 out v0.out

analyze timecorr vec1 v1 tstep 1.0 tcorr 100.0 out v1.out

analyze timecorr vec1 v0 vec2 v1 tstep 1.0 tcorr 100.0 out v0_v1.out

Similarly, a vector perpendicular to the plane through atoms 18, 19, and 20 is
obtained and further analyzed.

vector v2 @18,@19,@20 corrplane order 2

analyze timecorr vec1 v3 tstep 1.0 tcorr 100.0 out v2.out

For obtaining time correlation functions according to the ired approach, two
"sweeps" through the trajectory are necessary. First, ired vectors are defined and an
ired matrix is calculated and analyzed. Ired eigenvectors are output to ired.vec.

vector v0 @5 ired @6

vector v1 @7 ired @8

...

vector v5 @15 ired @16

vector v6 @17 ired @18

matrix ired name matired order 2

analyze matrix matired vecs 6 out ired.vec

In a subsequent ptraj run, ired time correlation functions are calculated by projecting
the snapshots onto the ired eigenvectors (read from ired.vec), which results in cor-
rired vectors. Then, time correlation functions are computed. Please note that it is
important that the corrired vector definition agrees with the one used for calculation
of the ired matrix.

vector v0 @5 corrired @6 order 2 modes ired.vec beg 1 end 6 npair 1

vector v1 @7 corrired @8 order 2 modes ired.vec beg 1 end 6 npair 2

...

vector v5 @15 corrired @16 order 2 modes ired.vec beg 1 end 6 npair 6

vector v6 @17 corrired @18 order 2 modes ired.vec beg 1 end 6 npair 7

analyze timecorr vec1 v0 tstep 1.0 tcorr 100.0 out v0.out

...

analyze timecorr vec1 v6 tstep 1.0 tcorr 100.0 out v6.out

3/3/06

ptraj Page 260

10.7. Hydrogen bonding facility
The ptraj program now contains a generic facility for keeping track of lists of pair interac-

tions (subject to a distance and angle cutoff) useful for calculation hydrogen bonding or other
interactions. It is designed to be able to track the interactions between a list of hydrogen bond
"donors" and hydrogen bond "acceptors" that the user specifies.

donor resname atomname | mask mask | clear | print

This command sets the list of hydrogen bond donors. It can be specified repeatedly
to add to the list of potential donors. The usage is either as a pair of residue and
atom names or as a specified atom mask. The former usage,

donor ADE N7

would set all atoms named N7 in residues named ADE to be potential donors.

donor mask :10@N7

would set the atom named N7 in residue 10 to be a potential donor.

The keyword "clear" will clear the list of donors specified so far and the keyword
"print" will print the list of donors set so far.

The acceptor command is similar except that both the heavy atom and the hydrogen
atom are specified. If the same atom is specified twice (as might be the case to
probe ion interactions) then no angle is calculated between the donor and acceptor.

acceptor resname atomname atomnameH | mask mask maskH | clear | print

The donor and acceptor commands do not actually keep track of distances but
instead simply set of the list of potential interactions. To actually keep track of the
distances, the hbond command needs to be specified:

hbond [distance value] [angle value] [solventneighbor value]
[solventdonor donor-spec] [solventacceptor acceptor-spec]
[nosort] [time value] [print value] [series name]

The optional "distance" keyword specifies the cutoff distance for the pair interac-
tions and the optional "angle" keyword specifies the angle cutoff for the hydrogen
bond. The default is no angle cutoff and a distance of 3.5 angstroms. To keep track
of potential hydrogen bond interactions where we don’t care which molecule of a
given type is interaction as long as one is (such as with water), the "solvent"
keywords can be specified. An example would be keeping track of water or ions
interacting with a particular donor or acceptor. The maximum number of possible
interactions per a given donor or acceptor is specified with the "solventneighbor"
keyword. The list of potential "solvent" donors/acceptors is specified with the sol-
ventdonor and solventacceptor keywords (with a format the same as the
donor/acceptor keywords above).

3/3/06

ptraj Page 261

As an example, if we want to keep track of water interactions with our list of
donors/acceptors:

hbond distance 3.5 angle 120.0 solventneighbor 6 solventdonor WAT O

solventacceptor WAT O H1 solventacceptor WAT O H2

If you wanted to keep track of interactions with Na+ ions (assuming the atom name
was Na+ and residue name was also Na+):

hbond distance 3.5 angle 0.0 solventneighbor 6 solventdonor Na+ Na+

solventacceptor Na+ Na+ Na+

To print out information related to the time series, such as maximum occupancy and
lifetimes, specify the "series" keyword.

10.8. rdparm

rdparm requires an Amber prmtop file for operation and is menu driven. Rudimentary online
help is available with the "?" command. The basic commands are summarized here.

angles <mask>
Print all the angles in the file. If the <mask> is present, only print angles involving
these atoms. For example, atoms :CYT@C? will print all angles involving atoms
which have 2-letter names beginning with "C" from "CYT" residues.

atoms <mask>
Print all the atoms in the file. If the <mask> is present, only print these atoms.

bonds <mask>
Print all the bonds in the file. If the <mask> is present, only print bonds involving
these atoms.

checkcoords <Amber trajectory>
Perform a rudimentary check of the coordinates from the filename specified. This is
to look for obvious problems (such as overflow) and to count the number of frames.

dihedrals <mask>
Print all the dihedrals in the file. If the <mask> is present, only print dihedrals
involving one of these atoms.

ddrive <filename>
Create an input file for the SPASMS dihedral driver.

delete <bond || angle || dihedral> <number>
This command will delete a given bond, angle or dihedral angle based on the num-
ber specified from the current prmtop. The number specified should match that
shown by the corresponding print command. Note that a new prmtop file is not actu-
ally saved. To do this, use the writeparm command. For example, "delete bond 5"
will delete with 5th bond from the parameter/topology file.

delperturbed <bond || angle || dihedral> <number>
Same as delete above but to delete perturbed bonds, angles or dihedrals.

3/3/06

ptraj Page 262

restrain <bond || angle || dihedral>
This is a means to add restraints as is possible with the "parm" program. Its usage is
somewhat obsolete because more flexible restraints can be specified with the NMR
functionality of sander. To use this command, specify whether the restraint is to a
bond, angle or dihedral and the program will prompt for atom numbers (as specified
in the "atom" or "printatom" command). As before, the prmtop is not actually saved
until a "writeparm" command is issued.

openparm <filename>
Open up the prmtop file specified.

writeparm <filename>
Write a new prmtop file to "filename" based on the current (and perhaps modified)
parameter/topology file.

system <string>
Execute the command "string" on the system.

mardi2sander <constraint file>
A rudimentary conversion of Mardigras style restraints to sander NMR restraint for-
mat.

rms <Amber trajectory>
Create a 2D RMSd plot in postscript or PlotMTV format using the trajectory speci-
fied. The user will be prompted for information. This command is rather slow and
should be integrated into the "ptraj" code, however it hasn’t been yet.

stripwater This command will remove or add three point waters to a prmtop file that already
has water. The user will be prompted for information. This is useful to take an
existing prmtop and create another with a different amount of water. Of course, cor-
responding coordinates will also have to be built and this is not done by "rdparm".
To do this, ideally construct a PDB file and convert to Amber coordinate format
using "ptraj".

ptraj <script-file>
This command reads a file or from standard input a series of commands to perform
processing of trajectory files. See the supplemental documentation.

transform <Amber trajectory>
Perform rudimentary trajectory processing; this command is obsolete.

translateBox <Amber coords>
Translate the coordinates (only if they contain periodic box information) specified to
place either at the origin (SPASMS format) or at half the box (Amber format).

modifyBoxInfo
This is a command to modify the box information, such as to change the box size.
The changes are not saved until a writeparm command is issued.

modifyMolInfo
This command checks the molecule info (present with periodic box coordinates are
specified) and points out problems if they exist. In particular, this is useful to over-
come the deficiency in edit which places all the "add" waters into a single molecule.

parmInfo Print out information about the current prmtop file.

pertbonds, perturbedBonds
Print out the perturbed bonds.

3/3/06

ptraj Page 263

pertangles, perturbedAngles
Print out the perturbed angles.

pertdihedrals, perturbedDihedrals
Print out the perturbed dihedrals.

printAngles Same as "angles".

printAtoms Same as "atoms".

printBonds Same as "bonds".

printDihedrals
Same as "dihedrals".

printExcluded
Print the excluded atom list.

printLennardJones
Print out the Lennard-Jones parameters.

printTypes Print out the atom types.

quit Quit the program.

3/3/06

MM_PBSA Page 264

11. MM_PBSA
The MM_PBSA approach represents the postprocessing method to evaluate free energies of

binding or to calculate absolute free energies of molecules in solution. The sets of structures are
usually collected with molecular dynamics or Monte Carlo methods. However, the collections of
structures should be stored in the format of an AMBER trajectory file. The MM_PBSA/GBSA
method combines the molecular mechanical energies with the continuum solvent approaches.
The molecular mechanical energies are determined with the sander program from AMBER and
represent the internal energy (bond, angle and dihedral), and van der Waals and electrostatic inter-
actions. An infinite cutoff for all interactions is used. The electrostatic contribution to the solva-
tion free energy is calculated with a numerical solver for the Poisson-Boltzmann (PB) method, for
example, as implemented in the pbsa program [108] or by generalized Born (GB) methods imple-
mented in sander. Previous MM_PBSA applications were mostly performed with a numerical
PB solver in the widely used DelPhi program [110], which has been shown by AMBER develop-
ers to be numerically consistent with the pbsa program. The nonpolar contribution to the solva-
tion free energy has been determined with solvent-accessible-surface-area-dependent terms [105].
The surface area is computed with Paul Beroza’s molsurf program, which is based on analytical
ideas primarily developed by Mike Connolly [201]. An alternative method for nonpolar solvation
energy is also included here (Tan and Luo, in preparation). The new method separates nonpolar
contribution into two terms: the attractive (dispersion) and repulsive (cavity) interactions. Doing
so significantly improves the correlation between the cavity free energies and solvent accessible
surface areas for branched and cyclic organic molecules [116]. This is in contrast to the com-
monly used strategy that correlates total nonpolar solvation energies with solvent accessible sur-
face areas, which only correlates well for linear aliphatic molecules [105]. In the new method,
the attractive interaction is computed by a numerical integration over the solvent accessible sur-
face area that accounts for solute solvent attractive interactions with an infinite cutoff [117].
Finally, estimates of conformational entropies can be made with the nmode module from
AMBER.

Although the basic ideas here have many precedents, the first application of this model in its
present form was to the A- and B-forms of RNA and DNA, where many details of the basic
method are given [202]. You may also wish to refer to a review summarizing many of the initial
applications of this model [203], as well as to papers describing more recent applications
[204-208].

The initial MM_PBSA scripts were written by Irina Massova. These were later modified
and mostly turned into Perl scripts by Holger Gohlke, who also added GB/SA (generalized
Born/surface area) options, and techniques to decompose energies into pairwise contributions
from groups (where possible).

11.1. General instructions
The general procedure is to edit the mm_pbsa.in file (see below), and then to run the code as

follows:

mm_pbsa.pl mm_pbsa.in > mm_pbsa.log

The mm_pbsa.in file refers to "receptor", "ligand" and "complex", but the chemical nature of
these is up to the user, and these could equally well be referred to as "A", "B", and "AB". The
procedure can also be used to estimate the free energy of a single species, and this is usually con-
sidered to be the "receptor".

3/3/06

MM_PBSA Page 265

The user also needs to prepare prmtop files for receptor, ligand, and complex using LEaP; if
you are just doing "stability" calculations, only one of the prmtop files is required.

The output files are labeled ".out", and the most useful summaries are in the "statistics.out"
files. These give averages and standard deviations for various quantities, using the following
labeling scheme:

*** Abbreviations for mm_pbsa output ***

ELE - non-bonded electrostatic energy + 1,4-electrostatic energy

VDW - non-bonded van der Waals energy + 1,4-van der Waals energy

INT - bond, angle, dihedral energies

GAS - ELE + VDW + INT

PBSUR - hydrophobic contrib. to solv. free energy for PB calculations

PBCAL - reaction field energy calculated by PB

PBSOL - PBSUR + PBCAL

PBELE - PBCAL + ELE

PBTOT - PBSOL + GAS

GBSUR - hydrophobic contrib. to solv. free energy for GB calculations

GB - reaction field energy calculated by GB

GBSOL - GBSUR + GB

GBELE - GB + ELE

GBTOT - GBSOL + GAS

TSTRA - translational entropy (as calculated by nmode) times temperature

TSROT - rotational entropy (as calculated by nmode) times temperature

TSVIB - vibrational entropy (as calculated by nmode) times temperature

*** Prefixes in front of abbreviations for energy decomposition ***

"T" - energy part due to _T_otal residue

"S" - energy part due to _S_idechain atoms

"B" - energy part due to _B_ackbone atoms

The $AMBERHOME/src/mm_pbsa/Examples directory shows examples of running a "Sta-
bility" calculation (i.e., estimating the free energy of one species), a "Binding" calculation (esti-
mating ∆G for A + B → AB), an "Nmode" calculation (to estimate entropies), and two examples
of how total energies can be decomposed (either by residue, or pair-wise by residue). You should
study the inputs and outputs in these directories to see how the program is typically used.

3/3/06

MM_PBSA Page 266

11.2. Preparing the input file
Below is a prototype mm_pbsa.in file; items in boldface would typically vary from run to

run.

#

Input parameters for mm_pbsa.pl

#

Holger Gohlke

08.01.2002

#

##

@GENERAL

#

General parameters

0: means NO; >0: means YES

#

mm_pbsa allows to calculate (absolute) free energies for one molecular

species or a free energy difference according to:

#

Receptor + Ligand = Complex,

DeltaG = G(Complex) - G(Receptor) - G(Ligand).

#

PREFIX - To the prefix, "{_com, _rec, _lig}.crd.Number" is added during

generation of snapshots as well as during mm_pbsa calculations.

PATH - Specifies the location where to store or get snapshots.

#

COMPLEX - Set to 1 if free energy difference is calculated.

RECEPTOR - Set to 1 if either (absolute) free energy or free energy

difference are calculated.

LIGAND - Set to 1 if free energy difference is calculated.

#

COMPT - parmtop file for the complex (not necessary for option GC).

RECPT - parmtop file for the receptor (not necessary for option GC).

LIGPT - parmtop file for the ligand (not necessary for option GC).

#

GC - Snapshots are generated from trajectories (see below).

AS - Residues are mutated during generation of snapshots from trajectories.

DC - Decompose the free energies into individual contributions

(only works with MM and GB).

#

MM - Calculation of gas phase energies using sander.

GB - Calculation of desolvation free energies using the GB models in sander

(see below).

PB - Calculation of polar solvation free energies by using pbsa (see below).

Calculation of nonpolar solvation free energies according to

the NPOPT option in pbsa (see below).

MS - Calculation of nonpolar contributions to desolvation using molsurf

3/3/06

MM_PBSA Page 267

(see below).

If MS == 0 and GB == 1, nonpolar contributions are calculated with the

LCPO method in sander.

If MS == 0 and PB == 1, nonpolar contributions are calculated according

the NPOPT option in pbsa (see below).

NM - Calculation of entropies with nmode.

#

PREFIX snapshot

PATH ./

#

COMPLEX 1

RECEPTOR 1

LIGAND 1

#

COMPT ./parm_com.top

RECPT ./parm_rec.top

LIGPT ./parm_lig.top

#

GC 0

AS 0

DC 0

#

MM 1

GB 0

PB 1

MS 0

#

NM 0

#

##

@DECOMP

#

Energy decomposition parameters (this section is only relevant if DC = 1 above)

#

Energy decomposition is performed for gasphase energies, desolvation free

energies calculated with GB, and nonpolar contributions to desolvation

using the LCPO method.

For amino acids, decomposition is also performed with respect to backbone

and sidechain atoms.

#

DCTYPE - Values of 1 or 2 yield a decomposition on a per-residue basis,

values of 3 or 4 yield a decomposition on a pairwise per-residue

basis. For the latter, so far the number of pairs must not

exceed the number of residues in the molecule considered.

Values 1 or 3 add 1-4 interactions to bond contributions.

Values 2 or 4 add 1-4 interactions to either electrostatic or vdW

contributions.

#

COMREC - Residues belonging to the receptor molecule IN THE COMPLEX.

3/3/06

MM_PBSA Page 268

COMLIG - Residues belonging to the ligand molecule IN THE COMPLEX.

RECRES - Residues in the receptor molecule.

LIGRES - Residues in the ligand molecule.

{COM,REC,LIG}PRI - Residues considered for output.

{REC,LIG}MAP - Residues in the complex which are equivalent to the residues

in the receptor molecule or the ligand molecule.

#

DCTYPE 2

#

COMREC 1-166 254-255

COMLIG 167-253

COMPRI 1-255

RECRES 1-168

RECPRI 1-168

RECMAP 1-166 254-255

LIGRES 1-87

LIGPRI 1-87

LIGMAP 167-253

##

@PB

#

PB parameters (this section is only relevant if PB = 1 above)

#

The following parameters are passed to the PB solver.

Additional input parameters may also be added here. See the sander PB

documention for more options.

#

PROC - Determines which method is used for solving the PB equation:

By default, PROC = 2, the pbsa program of the AMBER suite is used.

REFE - Determines which reference state is taken for PB calc:

By default, REFE = 0, reaction field energy is calculated with

EXDI/INDI. Here, INDI must agree with DIELC from MM part.

INDI - Dielectric constant for the solute.

EXDI - Dielectric constant for the surrounding solvent.

ISTRNG - Ionic strength (in mM) for the Poisson-Boltzmann solvent.

PRBRAD - Solvent probe radius in Angstrom:

1.4: with the radii in the prmtop files. Default.

1.6: with the radii optimized by Tan and Luo (In preparation).

See RADIOPT on how to choose a cavity radii set.

RADIOPT - Option to set up radii for PB calc:

0: uses the radii from the prmtop file. Default.

1: uses the radii optimized by Tan and Luo (In preparation)

with respect to the reaction field energies computed

in the TIP3P explicit solvents. Note that optimized radii

are based on AMBER atom types (upper case) and charges.

Radii from the prmtop files are used if the atom types

are defined by antechamber (lower case).

SCALE - Lattice spacing in no. of grids per Angstrom.

LINIT - No. of iterations with linear PB equation.

3/3/06

MM_PBSA Page 269

#

NP Parameters for nonpolar solvation energies if MS = 0

#

NPOPT - Option for modeling nonpolar solvation free energy.

See pbsa below for more information on the implementations

by Tan and Luo (In preparation).

1: uses the solvent-accessible-surface area to correlate total

nonpolar solvation free energy:

Gnp = CAVITY_SURFTEN * SASA + CAVITY_OFFSET. Default.

2. uses the solvent-accessible-surface area to correlate the

repulsive (cavity) term only, and uses a surface-integration

approach to compute the attractive (dispersion) term:

Gnp = Gdisp + Gcavity

= Gdisp + CAVITY_SURFTEN * SASA + CAVITY_OFFSET.

When this option is used, RADIOPT has to be set to 1,

i.e. the radii set optimized by Tan and Luo to mimic Gnp

in TIP3P explicit solvents. Otherwise, there is no guarantee

that Gnp matches that in explicit solvents.

CAVITY_SURFTEN/CAVITY_OFFSET - Values used to compute the nonpolar

solvation free energy Gnp according NPOPT. The default values

are for NPOPT set to 0 and RADIOPT set to 0 (see above).

If NPOPT is set to 1 and RADIOPT set to 1, these two lines

can be removed, i.e. use the default values set in pbsa

for this nonpolar solvation model. Otherwise, please

set these to the following:

CAVITY_SURFTEN: 0.04356

CAVITY_OFFSET: -1.008

#

NP Parameters for nonpolar solvation energies if MS = 1

#

SURFTEN/SURFOFF - Values used to compute the nonpolar contribution Gnp to

the desolvation according to Gnp = SURFTEN * SASA + SURFOFF.

#

PROC 2

REFE 0

INDI 1.0

EXDI 80.0

SCALE 2

LINIT 1000

PRBRAD 1.4

ISTRNG 0.0

RADIOPT 0

NPOPT 1

CAVITY_SURFTEN 0.0072

CAVITY_OFFSET 0.00

#

SURFTEN 0.0072

SURFOFF 0.00

#

3/3/06

MM_PBSA Page 270

##

@MM

#

MM parameters (this section is only relevant if MM = 1 above)

#

The following parameters are passed to sander.

For further details see the sander documentation.

#

DIELC - Dielectricity constant for electrostatic interactions.

Note: This is not related to GB calculations.

#

DIELC 1.0

#

##

@GB

#

GB parameters (this section is only relevant if GB = 1 above)

#

The first group of the following parameters are passed to sander.

For further details see the sander documentation.

#

IGB - Switches between Tsui’s GB (1) and Onufriev’s GB (2, 5).

GBSA - Switches between LCPO (1) and ICOSA (2) method for SASA calc.

Decomposition only works with ICOSA.

SALTCON - Concentration (in M) of 1-1 mobile counterions in solution.

EXTDIEL - Dielectricity constant for the surrounding solvent.

INTDIEL - Dielectricity constant for the solute.

#

SURFTEN / SURFOFF - Values used to compute the nonpolar contribution Gnp to

the desolvation according to Gnp = SURFTEN * SASA + SURFOFF.

#

IGB 2

GBSA 1

SALTCON 0.00

EXTDIEL 80.0

INTDIEL 1.0

#

SURFTEN 0.0072

SURFOFF 0.00

#

##

@MS

#

Molsurf parameters (this section is only relevant if MS = 1 above)

#

PROBE - Radius of the probe sphere used to calculate the SAS.

Since Bondi radii are already augmented by 1.4A, PROBE should be 0.0

#

PROBE 0.0

3/3/06

MM_PBSA Page 271

#

###

@NM

#

Parameters for sander/nmode calculation (this section is only relevant

if NM = 1 above)

#

The following parameters are passed to sander (for minimization) and nmode

(for entropy calculation using gasphase statistical mechanics).

For further details see documentation.

#

DIELC - (Distance-dependent) dielectric constant

MAXCYC - Maximum number of cycles of minimization.

DRMS - Convergence criterion for the energy gradient.

#

DIELC 4

MAXCYC 10000

DRMS 0.0001

#

###

@MAKECRD

#

The following parameters are passed to make_crd_hg, which extracts snapshots

from trajectory files. (this section is only relevant if GC = 1 OR AS = 1 above.)

#

BOX - "YES" means that periodic boundary conditions were used during MD

simulation and that box information has been printed in the

trajectory files; "NO" means opposite.

NTOTAL - Total number of atoms per snapshot printed in the trajectory file

(including water, ions, ...).

NSTART - Start structure extraction from the NSTART-th snapshot.

NSTOP - Stop structure extraction at the NSTOP-th snapshot.

NFREQ - Every NFREQ structure will be extracted from the trajectory.

#

NUMBER_LIG_GROUPS - Number of subsequent LSTART/LSTOP combinations to

extract atoms belonging to the ligand.

LSTART - Number of first ligand atom in the trajectory entry.

LSTOP - Number of last ligand atom in the trajectory entry.

NUMBER_REC_GROUPS - Number of subsequent RSTART/RSTOP combinations to

extract atoms belonging to the receptor.

RSTART - Number of first receptor atom in the trajectory entry.

RSTOP - Number of last receptor atom in the trajectory entry.

Note: If only one molecular species is extracted, use only the receptor

parameters (NUMBER_REC_GROUPS, RSTART, RSTOP).

#

BOX YES

NTOTAL 25570

NSTART 1

NSTOP 5000

3/3/06

MM_PBSA Page 272

NFREQ 500

#

NUMBER_LIG_GROUPS 0

LSTART 0

LSTOP 0

NUMBER_REC_GROUPS 1

RSTART 1

RSTOP 2666

#

###

@ALASCAN

#

The following parameters are additionally passed to make_crd_hg in conjunction

with the ones from the @MAKECRD section if "alanine scanning" is requested.

(this section is only relevant if AS = 1 above.)

#

The description of the parameters is taken from Irina Massova.

#

NUMBER_MUTANT_GROUPS - Total number of mutated residues. For each mutated

residue, the following four parameters must be given

subsequently.

MUTANT_ATOM1 - If residue is mutated to Ala then this is a pointer on CG

atom of the mutated residue for all residues except Thr,

Ile and Val.

A pointer to CG2 if Thr, Ile or Val residue is mutated to Ala

If residue is mutated to Gly then this is a pointer on CB.

MUTANT_ATOM2 - If residue is mutated to Ala then this should be zero for

all mutated residues except Thr and VAL.

A pointer on OG1 if Thr residue is mutated to Ala.

A pointer on CG1 if VAL or ILE residue is mutated to Ala.

If residue is mutated to Gly then this should be always zero.

MUTANT_KEEP - A pointer on C atom (carbonyl atom) for the mutated residue.

MUTANT_REFERENCE - If residue is mutated to Ala then this is a pointer on

CB atom for the mutated residue.

If residue is mutated to Gly then this is a pointer on

CA atom for the mutated residue.

Note: The method will not work for a smaller residue mutation to a bigger

for example Gly -> Ala mutation.

Note: Maximum number of the simultaneously mutated residues is 40.

#

NUMBER_MUTANT_GROUPS 3

MUTANT_ATOM1 1480

MUTANT_ATOM2 0

MUTANT_KEEP 1486

MUTANT_REFERENCE 1477

MUTANT_ATOM2 1498

MUTANT_ATOM1 1494

MUTANT_KEEP 1500

MUTANT_REFERENCE 1492

3/3/06

MM_PBSA Page 273

MUTANT_ATOM1 1552

MUTANT_ATOM2 0

MUTANT_KEEP 1562

MUTANT_REFERENCE 1549

#

###

@TRAJECTORY

#

Trajectory names

#

The following trajectories are used to extract snapshots with "make_crd_hg":

Each trajectory name must be preceded by the TRAJECTORY card.

Subsequent trajectories are considered together; trajectories may be

in ascii as well as in .gz format.

To be able to identify the title line, it must be identical in all files.

#

TRAJECTORY ../prod_II/md_nvt_prod_pme_01.mdcrd.gz

TRAJECTORY ../prod_II/md_nvt_prod_pme_02.mdcrd.gz

TRAJECTORY ../prod_II/md_nvt_prod_pme_03.mdcrd.gz

TRAJECTORY ../prod_II/md_nvt_prod_pme_04.mdcrd.gz

TRAJECTORY ../prod_II/md_nvt_prod_pme_05.mdcrd.gz

#

##

@PROGRAMS

#

Additional program executables can be defined here

#

#

##

11.3. Auxiliary programs used by MM_PBSA
Several programs can be used to compute numerical solutions to the Poisson-Boltzmann

equation. The default is pbsa, which is described here. Other programs for computing numerical
Poisson-Boltzmann results are also available, such as Delphi, MEAD and UHBD. These could be
merged into the Perl scripts developed here with a little work. See:

http://honiglab.cpmc.columbia.edu/ (for DELPHI)

http://www.scripps.edu/bashford (for MEAD)

http://adrik.bchs.uh.edu/uhbd.html (for UHBD)

The program pbsa is a stand-alone program that is much like sander with the IGB = 10
option. Please see sander PB pages in Section 6.2 for detailed description.

3/3/06

NMODE Page 274

12. Nmode

Usage:

nmode [-O] -i nmdin -o nmdout -c inpcrd -p prmtop -r restrt

-ref refc -v vecs -l lmode -t tstate -e expfile

−O: Overwrite output files if they exist.

12.1. Introduction
This program performs molecular mechanics calculations on proteins and nucleic acids,

using first and second derivative information to find local minima, transition states, and to per-
form vibrational analyses. It is designed to read the prmtop and inpcrd files from the Amber suite
of programs. Both Additive and Non-additive Hamiltonians are available in this version. Nmode
was originally written at the University of California, Davis, by D.T. Nguyen and D.A. Case,
based in part on code in the Amber 2.0 package. Major revisions were made at the Research
Institute of Scripps Clinic by J. Kottalam and D.A. Case. M. Pique has provided valuable advice
and help in porting it to many different machines. J.W.Caldwell implemented the non-additive
capabilities.

The second derivative routines are based on expressions used in the Consistent Force Field
programs [209]. The code also contains routines to search for transition state, starting (generally)
from a minimum. This procedure uses a modification of the procedure of Cerjan and Miller
[210], as described by Nguyen and Case [211]. Langevin modes are analogous to normal modes,
but in the presence of a viscous coupling to a continuum solvent. The basic ideas are presented
by Lamm and Szabo [212], and were implemented in the Amber environment by Kottalam and
Case [213].

12.2. General description This program performs five tasks, depending on the value of
the input variable ntrun (see below):

(1) Perform a normal mode analysis from starting coordinates. Requires an input structure
that has already been minimized, from process (4), below, or by some other method. In
addition to the computation of normal mode frequencies, thermodynamic parameters are
calculated.

(2) Search for transition state, starting (generally) from a minimum. See the references above
for a detailed description of the method.

(3) Perform a conjugate gradient minimization from the starting coordinates. This routine
uses an IMSL library routine for this purpose, which is not supplied with this program.
Persons who do not have access to the IMSL library should probably use the AMBER
"sander" program to carry out conjugate gradient minimizations.

(4) Does a Newton-Raphson minimization from starting coordinates. A constant (tlamba) is
added to the diagonal elements of the Hessian matrix to make it positive definite. Tlamba
is chosen in a manner such that the step is always downhill in all directions. Whenever the

3/3/06

NMODE Page 275

change in energy is > emx or the rms of step length is > smx, the step length is scaled
back repeatedly until the above two conditions are satisfied. Note that this routine will
not converge to a transition state.

(5) Perform a langevin mode calculation, starting from a minimized structure. This option is
similar to (1), but includes the viscous effects of a solvent in the calculation.

Input files for this program are the same as for the regular AMBER minimization and
molecular dynamics programs, with the exception of nmdin, whose parameters are given below.
The defaults have been carefully selected, so that for most purposes, few of them need to be
changed. See the sample runs for more information.

12.3. Files

nmdin : control input for the run

nmdout : standard output file for print and error messages

prmtop : parameter and topology file

inpcrd : starting coordinates

refc : input coordinates for constraints

restrt : output coordinates at end of minimization

prlist : file for reading or storing the non-bonded pair list

vecs : file containing output normal mode frequencies and eigenvectors

tstate : output coordinates at a transition state

expfile: file to read exposed surface area for atoms

lmode : file to write Langevin modes

12.4. Input description
Input found on nmdin: You can use as many title cards as you want, followed by the

namelist &data, which contains the following variables.

General flags describing the calculation

ntrun 1: do normal mode analysis (default)
2: search for transition states
3: do conjugate gradient minimization (requires IMSL library)
4: do Newton-Raphson minimization
5: do Langevin mode analysis

ibelly 1: some atoms are to be held fixed (default=0)

icons 1: do constrained minimization to initial coordinates specified in refc.
(default=0)

maxcyc max. number of cycles for minimization (default=100)

3/3/06

NMODE Page 276

drms rms gradient to stop minimization (default=1.e-5)

nv ect number of vectors for normal mode analysis (default=0)

ismem set to 1 for "small memory model" for normal modes, which uses about one-
third the memory of the default (ismem=0) model. The tradeoff is that no eigen-
vectors can be computed, so that nvect is set to zero whenever ismem=1

nsave for every nsave steps the coordinates are saved. (default= 20)

nprint every nprint-th step the energy will be printed

ilevel if .ne. 0, then adjust second derivative matrix to put rotation and translation vec-
tors to a high frequency; this can be useful if you want to perform a normal mode
analysis from a not-completely-minimized structure, so that rotations and transla-
tions don’t mix with the low-lying modes (default=0).

ivform 0 if the normal mode eigenvectors are to be written out in unformatted form; 1 to
use the Amber standard formatted option (default); 2 to write out the normal
modes in MKL format for the molekel program (see http://www.cscs.ch/molekel).

ntx 0 if the input coordinates are to be read in unformatted form; 1 to use the format-
ted option (default).

ntxo 0 if the output (restart) coordinates are to be written out in unformatted form; 1
to use the formatted option (default).

t Temperature to use in calculating thermodynamic properties from the modes;
default is 298.15.

Control of certain force field parameters

cut radius for non-bonded cutoff (default=99.)

scnb 1-4 nonbonded scale factor (default=2.0)

scee 1-4 electrostatic scale factor (default=2.0)

dielc dielectric constant (default=1.0)

idiel 0 for r**2 dielectric dependence (default); 1 for constant dielectric.

ipol = 0 no polarization (default)
= 1 include polarization modules

i3bod = 0 no three-body interactions(default)
= 1 readin and use specified three body interactions

(see the sander input area for details)

iprr 1: read in a non-bonded pair list from prlist; (default = 0)

iprw 1: write out non-bonded pair list to prlist; (default = 0)

3/3/06

NMODE Page 277

control of Newton-Raphson and transition-state searches

smx maximum rms step length (default = 0.08)

emx maximum energy change per step (default =0.3)

alpha scale factor for step length (default = 0.8) (See Nguyen and Case paper for
description of smx, emx, and alpha.)

bdwnhl constant to determine tlamba, the value to be subtracted from the diagonal ele-
ments of Hessian matrix for a downhill step. tlamba is chosen as min ((lowest
eigenvalue - bdwnhl) , 0). (default bdwnhl = 0.1)

ndiag for ev ery ndiag steps, the matrix is diagonalized to calculate tlamba, when
ntrun=4

dfpred a rough estimate of the expected reduction in energy for the initial step (only for
ntrun = 3). (default = 0.01 kcal/mol)

parameters for running Langevin modes (set ntrun = 5)

eta viscosity in centipoise

ioseen 0: Stokes Law used for hydrodynamic interaction
1: Oseen interaction included
2: Rotne-Prager correction included

hrmax hydrodynamic radius for the atom with largest area exposed to solvent. If a file
named ’expfile’ is present, then the relative exposed areas are read from that file
as a namelist

namelist /exposure/ expr(natom)

If ’expfile’ does not exist, then all atoms are assigned a hydrodynamic radius of
hrmax.

3/3/06

NMODE Page 278

parameters for transition state search (when ntrun = 2)

istart 0: new calc. (default)
1: restart calc.

iflag 0: search for transition state then minimum (default)
1: search for minimum from a transition state
-1: search for a transition state, then stop

iv ect no. of eigenvectors wanted (default=2) (ivect has to be >=isdir)

isdir eigenvector along which search for transition state is to be made. Note that
translations and rotations are removed from the Hessian, so this number refers to
the ordering of the "true" vibrational normal modes. (default=1)

idir search direction: = 1 along isdir direction (default); = -1 opposite isdir direction

isw no. of steps before switching to the lowest mode (default=40)

hnot initial step length (default=0.1 Ang.)

buphl switch to Newton-Raphson step when lowest eigenvalue is less than this for
uphill walk. (default=-0.1)

Cards 3 group cards for the parts of the molecule that move, if ibelly.ne.0. See group
documentation for format.

Cards 4 group cards for the part of the molecule to be constrained, along with the con-
straint weights, if icons.ne.0. See group documentation for format.

Memory usage: Normal mode analysis can take a lot of memory; users should consult the
alloc.f file to see all of the details. The biggest memory hog is generally for the second
derivative (Hessian) matrix. In the "normal" case, for ntrun=1, the program requires
9N (3N −1) /2 8-byte words of storage. For a 400 atom system, this is about 2.1 million words, or
17 Mbytes, which is generally no problem. For a 4000 atom system, however, this translates to
216 million words, or 1.7 Gbytes, which may not always be available. For larger systems, normal
mode calculations that store everything in memory become increasingly impractical.

By setting ismem to 1, you can reduce the memory usage to 1/3 of the above estimate, at the
expense of not calculating eigenvectors. This can sometimes make calculations feasible that oth-
erwise would not be, but only for a fairly narrow range of problem sizes. More elaborate
schemes, involving sparse matrix storage, are certainly possible, but have not yet been imple-
mented in nmode.

3/3/06

resp Page 279

13. Miscellaneous

13.1. Resp
RESP (Restrained ElectroStatic Potential) fits the quantum mechanically calculated electro-

static potential (esp) at molecular surfaces using an atom-centered point charge model. This
method was developed primarily by Christopher Bayly [214-216]. A quantum mechanical pro-
gram, such as Gaussian, Jaguar, or GAMESS, must be used to generate the ESP input for RESP.
See $AMBERHOME/src/resp/0README for tips for interfacing such programs with RESP.
Note that antechamber automates most of this process: use the -fo gcrt option to create a Gaus-
sian input file; then run Gaussian; then use the -fi gout -c resp option to automatically create the
resp input file and run a two-stage fitting procedure. If you don’t use Gaussian, you can still run
respgen to automatically create the input files needed for resp.

Another alternative is to use the "RED" programs to create RESP input and to manage the
calculations. See http://www.u-picardie.fr/labo/lbpd/RED/ for information
about this option.

Because so few users run RESP directly anymore, we have removed the input description
from this manual. The instructions can be accessed online at the Amber web site.

13.2. nucgen

Usage: nucgen [-O] -i ngin -o ngout -d ngdat -p pdbout

−O Overwrite output files.

This program generates cartesian coordinate models for either double helical DNA or RNA with a
number of possible conformations. The conformations are taken from fibre-diffraction studies
[217]. The helical topology of the double helix is stored in a file for individual types in terms of
cylindrical coordinates. The program loads the required topoplogy and applies two fold symme-
try with necessary helical repeat and height values. The cartesian coordinates are output in PDB
format. The residue information is read as in the link module either for DNA or RNA. The input
is described below.

NUCGEN requires specification of two strands: if only one is given, it will wrap it into two
with highly stretched base-phosphate bonds across the end, so for single strands, specify a
dummy strand and edit it out of the resulting PDB file. NUCGEN only generates reasonable
geometries for complementary base pairs.

NUCGEN can generate PDB files using the 1994 Amber force field convention, which does
not have explicit terminal hydrogen or phosphate residues. For the new residue names, only the
bases need to be specified, while for the old convention, terminal hydrogen residues (HB and HE)
and phosphates (POM) must also be specified. In the 1994 convention, residues are indicated by
the first letter (A, G, C, T) and terminal residues have an additional 5 or 3 appended (e.g. A5, A3).
See the LEaP chapter for a table of these names.

file unit purpose

3/3/06

nucgen Page 280

ngin 5 Input: Control and sequence data for the run

ngout 6 Output: Diagnostics

ngdat 7 Input: Monomer geometry file, found in amber41/dat

pdbout 10 Output: PDB output coordinates

Nucleic Acid sequence information is given as described here for each strand. Both strands
are entered in the 5’ to 3’ direction.

- 1A - A TITLE FOR EACH STRAND (20A4)

TITLE A title for the molecule.

- 1B - ILBMOL (A4)

ILBMOL Label for the type of molecule.

’D’ DNA

’R’ RNA

- 1C - RESIDUE INFORMATION FOR EACH STRAND

it is read in the following format until a blank

card is encounterd (card 1D).

LBRES(I) , I = 1,NRESM (16(A4,1X))

LBRES(I) Residue name.

--

- 1D - Blank Card to terminate residue input

--

NOTE: Cards 1A-1D are repeated for the second strand.

--

- 2 - KEND (A4)

KEND Control to stop reading the nucleotide strands.

’END ’ end of reading the sequence information

--

3/3/06

nucgen Page 281

- 3 - CONTROL FOR THE TYPE OF DNA OR RNA CONFORMATION

TYPM (A8)

TYPM Name of the type of conformation to be generated.

’$ARNA’ right handed a-rna (arnott)

’$APRNA’ right handed a-prime rna (arnott)

’$LBDNA’ right handed bdna (langridge)

’$ABDNA’ right handed bdna (arnott)

’$SBDNA’ left handed bdna (sasisekharan)

’$ADNA’ right handed a-dna (arnott)

’$SPECIAL’ special type by the user

--

- 4 - special helical parameter

***** only if typm .eq. ’$SPECIAL’ *****

hxrep , hxht (2f10.5)

hxrep Helical repeat angle in degrees for the special

type of conformation.

hxht Helical height.

NOTE: If you use ’$SPECIAL’, you will have to

add the appropriate data to file ngdat (found

in the database directory). Consult subroutine

gennuc for details.

13.3. ambpdb

NAME
ambpdb − convert amber-format coordinate files to pdb format

SYNOPSIS

ambpdb [-p prmtop-file][-tit title] [-pqr|-bnd|-atm]

[-aatm] [-bres] [-noter] [-offset #] [-bin] [-first]

DESCRIPTION
ambpdb is a filter to take a coordinate "restart" file from an AMBER dynamics or
minimization run (on STDIN) and prepare a pdb-format file (on STDOUT). The

3/3/06

ambpdb Page 282

program assumes that a prmtop file is available, from which it gets atom and
residue names.

OPTIONS

title The title, if given, will be output as a REMARK at the top of the file. It should
be protected by quotes or double quotes if it contains spaces or special characters.

-pqr If -pqr is set, output will be in the format needed for the MEAD suite of pro-
grams created by Don Bashford. The -atm option creates files used by Mike
Connolly’s surface area/volume programs. The -bnd option creates a file that
lists the bonds in the molecule, one per line.

-aatm This switch controls whether the output atom names follow Amber or
Brookhaven (PDB) formats. With the default (when this switch is not set), atom
names will be placed into four columns in an approximation to the rules used by
the Protein Data Base. This gives files that look very much like PDB files,
EXCEPT that PDB uses "1" and "2" for amino-acid beta-protons (for example)
whereas the standard Amber database (along with many in the NMR field) use
"2" and "3", i.e. we have 2HB and 3HB, whereas Brookhaven files use 1HB and
2HB. The protonate program can be used to check and re-name proton names to
various conventions.

If -aatm is set, Amber atom names will be left-justified in the output file, starting
in column 13.

Generally speaking, Amber programs that read PDB files (like protonate and
LEaP, work with either style of atom names. Programs like RASMOL, that
expect more strict conformance to Brookhaven standards, require the default
behavior; some other programs may work better with -aatm set, so that (for
example) all hydrogen atoms begin with "H", etc.

-bin If -bin is set, an unformatted (binary) "restart" file is read instead of a formatted
one (default). Please note that no detection of the byte ordering happens, so
binary files should be read on the machine they were created on.

-bres If -bres (Brookhaven-residue-names) is not set (the default), Amber-specific atom
names (like CYX, HIE, DG5, etc.) will be kept in the pdb file; otherwise, these
will be converted to PDB-standard names (CYS, HIS, G, in the above example).
Note that setting -bres creates a naming ambiguity between protonated and upro-
tonated forms of amino acids, and between DNA and RNA.

If you plan to re-read the pdb file back into Amber programs, you should use the
default behavior; for programs that demand stricter conformance to Brookhaven
standards, set -bres.

-first If -first is set, a pdb file augmented by additional information about hydrogen
bonds, salt bridges, and hydrophobic tethers is generated, which can serve as
input to the standalone version of the FIRST software by D. J. Jacobs, L. A.
Kuhn, and M. F. Thorpe.

-noter If -noter is set, the output PDB file not include TER cards between molecules.
Otherwise, TER cards will be added whenever there is not bond between adjacent
residues. Note that this means there will be a TER card between each water
molecule, for example, unless -noter is set. The PDB is idiosyncratic about TER

3/3/06

ambpdb Page 283

cards: they are generally present between separate protein chains, but generally
not present between cofactors or solvent molecules. This behavior is not mim-
icked by ambpdb.

-offset If a number is given here, it will be added to all residue numbers in the output
pdb file. This is useful if you want the first residue (which is always "1" in an
Amber prmtop file, to be a larger number, (say to more closely match a file from
Brookhaven, where initial residues may be missing). Note that the number you
provide is one less than what you want the first residue to have.

Residue numbers greater than 9999 will not "fit" into the Brookhaven format;
ambpdb actually prints mod(resno,10000); that is, after 9999, the residue number
re-cycles to 0.

FILES
Assumes that a prmtop file (with that name, or the one given in the -p option)
exists in the current directory; reads AMBER coordinates from STDIN, and
writes pdb-file to STDOUT.

BUGS
Inevitably, various niceties of the Brookhaven format are not as well supported as
they should be. The protonate program can be used to fix up hydrogen atom
names, but that functionality should really be integrated here. There is no good
solution to the PDB problem of using the same residue name for different chem-
cial species; depending on how the output file is to be used, the two options sup-
ported (setting or not setting -bres) may or may not suffice. Radii used for the
-pqr option are hard-wired into the code, requiring a re-compilation if they are to
be changed. Atom name output may be incorrect for atoms with two-character
atomic symbols, like calcium or iron. The -offset flag is a very limited start
toward more flexible handling of residue numbers; in the future (we hope!)
Amber prmtop files will keep track of the "original" residue identifiers from input
pdb files, so that this information would be available on output.

13.4. protonate

NAME
protonate − add protons to a heavy-atom protein or DNA PDB file; convert pro-
ton names between various conventions; check (pro)-chirality.

SYNOPSIS

Usage: protonate [-bcfhkmp] [-d datafile]

[-i input-pdb-file] [-o output-pdb-file] [-l logfile]

[-al link-file] [-ae edit-file] [-ap parm-file]

-b to write Brookhaven-like atom names

-c to write chains as separate molecules

-f to force write of atoms found (debugging)

-h to write ONLY hydrogens to output file

-k to keep original coordinates of matched protons

3/3/06

protonate Page 284

-m to list mismatched protons

-p to print proton substitutions

-d to specify datafile (default is PROTON_INFO)

-i to specify input file (default is stdin)

-o to specify output file (default is stdout)

-l to specify logfile (default is stderr)

DESCRIPTION
Protonate combines a program originally written by K. Cross to add protons to a
heavy-atom pdb file, with many extensions by J. Holland, G.P. Gippert & D.A.
Case. Names and descriptions of the output protons are contained in the info-file
(see below.) Protonate can be used to add protons that don’t exist, to change the
names of existing protons to some new convention, and to check pro-chirality of
protons in an input pdb file. The source code is in the src/protonate/
directory. Protonate generally will not do a careful job of orienting polar hydro-
gens, particularly for hydroxyls of serine, threonine and tyrosine; you can use the
pol_h program (described below) for this purpose.

OPTIONS

−k The output pdb file will keep the proton coordinates of the input file, to the extent
consistent with how well it can identify what names they should really have.
Otherwise it will replace input protons with ones it builds.

−b The program will insert a space before the name of each heavy atom in the output
file. This is most often used to convert input files whose atom names begin in
column 13 to the Brookhaven format where most heavy atom names begin in col-
umn 14. NOTE: two-letter heavy atom names (like FE or CA [calcium]) will not
be correct; the resulting output file must be hand-edited to check for this.

−d info_file Specifies the file containing information on how to build and name protons. The
default name is PROT ON_INFO. This information used to determine where on
the amino acids the protons should be placed. The file provided handles funny
Amber residue names like HIE, HIP and HID and HEM. Other files provided
include PROT ON_INFO.Brook, which uses Brookhaven proton naming conven-
tion (such as 1HB, etc.), and PROT ON_INFO.oldnames, which uses old amber
names. For example, to take an Amber pdb file and convert to the Brookhaven
naming convention, set -d PROT ON_INFO.Brook.

Output to LOGFILE includes matches of protons the program builds with any
found in the input file, plus a list of any input protons that could not be matched.
Questionable matches are flagged and should be checked manually.

BUGS
Format of the PROT ON_INFO file is not obvious unless you have read the code.

Methyl protons are built in a staggered conformation; hydroxyl protons in a arbi-
trary (and generally sub-optimal) conformation. A program like pol_h or its
equivalent should be used (if desired) to place polar hydrogens on LYS, SER,
THR, and SER residues.

HIS in the input file is assumed to be HID. Users should generally explicitly fig-
ure out the desired protonation state for histidines.

3/3/06

protonate Page 285

No attempt is made to identify heavy atoms in the input file that have two-letter
element names; this means that Brookhaven-style output may require some hand-
editing if atoms like calcium or iron are present.

It is assumed that the alternate conformer flag in column 17 of the PDB file is
either blank, or A. The program needs to be recompiled to change this; perhaps
this should become an input option.

13.5. ambmask

NAME
ambmask − test group input FIND mask (or mask string given in the &cntrl sec-
tion) and dump the resulting atom selection in a given format

SYNOPSIS
ambmask −p prmtop −c inpcrd −prnlev [0−3] −out [short|
pdb| amber] −find [maskstr]

DESCRIPTION

ambmask acts as a filter which takes amber topology and coordinate "restart" file and
applies the "maskstr" selection string (similar syntactically to UCSF Chimera/Midas) to select
specific atoms or residues. Residues can be selected by their numbers or names. Atoms can be
selected by numbers, names, or amber (forcefield) type. Selections are case insensitive. The
selected atoms are printed to stdout (by default, in amber−style pdb format). Atom and residue
names and numbers are taken from amber topology. Bew are that selection string works on those
names and not the ones from the original pdb file. If you are not sure how atoms or residues are
named or numbered in the amber topology, use ambmask with a selection string ":*" (which is
the default) to dump the whole pdb file with corresponding amber atom/residue names and num-
bers.

The "maskstr" selection expression is composed of "elementary selections". These start with
":" to select by residues, or "@" to select by atoms. Residues can be selected by numbers (given
as numbers separated by commas, or as ranges separated by a dash) or by names (given as a list
of residue names separated by commas). The same holds true for atom selections by atom num-
bers or atom names. In addition, atoms can be selected by amber atom type, in which case "@"
must be immediately followed by "%". ":*" means all residues and "@*" means all atoms. The
following examples show the usage of this syntax. Square brackets should not be used in actual
expressions, they are only used for clarity here:

:{residue numlist} [:1−10] [:1,3,5] [:1−3,5,7−9]

:{residue namelist} [:LYS] [:ARG,ALA,GLY]

@{atom numlist} [@12,17] [@54−85] [@12,54−85,90]

@{atom namelist} [@CA] [@CA,C,O,N,H]

@%{atom typelist} [@%CT] [@%N*,N3]

These "elementary selections" can be combined into more complex selections using binary

3/3/06

ambmask Page 286

operators "&" (and) and "|" (or), unary operator "!" (negation), distance binary operators "<:",
">:", "<@", ">@", and parentheses. Spaces around operators are irrelevant. Parentheses have the
highest priority, followed by distance operators ("<:", ">:", "<@", ">@"), "!" (negation), "&"
(and) and "|" (or) in order of descending priority. A wildcard "=" in an atom or residue name
matches any name starting with a given character (or characters). For example, [:AS=] would
match all aspartic acid residues (ASP), and asparagines (ASN); [@H=] would match all atom
names starting with H (which are effectively all hydrogens). It cannot be used to match the end
part of names (such as [:=A]). Some examples of more complex selections follow:

[@C= & !@CA,C]

.. all carbons except backbone alpha and carbonyl carbons

[(:1-3@CA | :5-7@CB)]

.. alpha carbons in residues 1-3 and beta carbons in residues 5-7

[:CYS,ARG & !(:1-10 | @CA,CB)]

.. all CYS and ARG atoms except those which are in residues 1-10 and which are CA or CB

[:* & !@H=] or [!@H=]

.. all heavy atoms (i.e. except hydrogens)

[:5 <@4.5]

.. all atoms within 4.5A from residue 5

[(:1-55 <:3.0) & :WAT]
.. all water molecules within 3A from residues 1-55

Compound expressions of the following type are also allowed:

:{residue numlist|namelist}@{atom numlist|namelist|typelist}

[:1−10@CA] is equivalent to [:1−10 & @CA]

[:LYS@H=] is equivalent to [:LYS & @H=]

OPTIONS

The program needs an amber topology file and coordinates (restrt format). The filename
specified with the −p option is amber topology, while the filename given with the −c option is a
coordinate file. If −p or −c options are not given, the program expects that files "prmtop" and/or
"inpcrd" exist in the current directory, which will be taken as topology and coordinate files corre-
spondingly. If no command line options are given, the program prints the usage statement.

The option −prnlev specifies how much (debugging) information is printed to stdout. If it is
0, only selected atoms are printed. More verbose output (which might be useful for debugging
purposes) is achieved with higher values: 1 prints original "maskstr" in its tokenized (with
operands enclosed in square brackets) and postfix (or Reverse Polish Notation) forms; number of
atoms and residues in the topology file and number of selected atoms are also printed to stdout. 2
prints the resulting mask array, which is an array of integer values, with ’1’ representing a
selected atom, and ’0’ an unselected one. Value of 3, in addition, prints mask arrays as they are
pushed or popped from the stack (this is really only useful for tracing the problems occurring dur-
ing stack operations). The −prnlev values of 0 or 1 should suffice for most uses.

The option −out specifies the format of printed atoms. "short" means a condensed output
using residue (:) and atom (@) designators followed by residue ranges and atom names. "pdb"
(default) prints atoms in amber-like pdb format with the original "maskstr" printed as a REMARK
at the top of the pdb file, and "amber" prints atom/residue ranges in the format suitable for

3/3/06

ambmask Page 287

copying into group input section of amber input file.

The option −find is followed by "maskstr" expression. This is a string where some charac-
ters have a special meaning and thus express what parts (atoms/residues) of the molecule will get
selected. The syntax of this string is explained in the section above (DESCRIPTION). If this
option is left out, it defaults to ":*", which selects all atoms in the given topology file. The length
of "maskstr" is limited to 80 characters. If the "maskstr" contains spaces or some special charac-
ters (which would be expanded by the shell), it should be protected by single or double quotes
(depending on the shell).

FILES

Assumes that a prmtop and inpcrd files exists in the current directory if they are not speci-
fied with −p and −c options. Resulting (i.e. selected) atoms are written to stdout.

BUGS

Because all atom names are left justified in amber topology and the selections are case
insensitive, there is no way to distinguish some atom names: alpha carbon CA and a calcium ion
Ca are a notorious example of that.

13.6. pol_h and gwh

NAME
pol_h − set positions of polar hydrogens in proteins
gwh − set positions of polar hydrogens onto water oxygen positions

SYNOPSIS

pol_h < input-pqr-file > output-pdb-file

gwh [-p <prmtop>] [-w <water.pdb>] [-c] [-e] < input_pdb_file

> output_pdb_file

DESCRIPTION
The program pol_h resets positions of polar hydrogens of protein residues (Lys,
Ser, Tyr and Thr), by optimizing simple electrostatic interactions. The input pqr
file can be created by ambpdb.

The program gwh sets positions of water hydrogens onto water oxygen positions
that may be present in PDB files, by optimizing simple electrostatic interactions.
If the -w flag is set, the program reads water oxygen positions from the file
water-position-file, rather than the default name watpdb. If -c is set, a constant
dielectric will be used to construct potentials, otherwise the (default) distant-
dependent dielectric will be used. If -e is set, the electrostatic potential will be
used to determine which hydrogens are placed first; otherwise, a distance crite-
rion will be used.

3/3/06

pol_h and gwh Page 288

Accuracy of pol_h & gwh:

* In the following the results for BPTI and RSA(ribosuclease A) are

given together with those of Karplus(1) and Ornstein(2) groups.

In the case of Ornstein’s method, it handles only some of hydrogens

in question and therfore I normalized(scaled) their results using

expected values for random generation. The rms deviation from the

experimental positions (neutron difraction) and the number of

hydrogens are shown below.

BPTI Lys Ser Tyr Thr Wat

--

of H 12 1 4 3 112 (4˜)

Pol_H 0.39 0.36 1.08 0.20 0.98(0.38)

Karplus 0.25 0.71 0.81 0.19 - (0.35)

Ornstein 0.22 0.96 0.00 0.07 -

Ornstn(scaled) 0.51 0.96 1.28 0.07 (1.17)ˆ

--

˜internal waters. ˆby random generation

RSA Lys Ser Tyr Thr Wat

--

of H 30 15 6 10 256

GuesWatH 0.61 0.96 1.22 0.96 0.98

Karplus 0.60 0.98 0.60 1.12 1.20

Ornstein 0.20 0.61 0.60 0.30 -

Ornstn(scaled) 0.49 0.89 0.76 0.93 (1.14)ˆ

--

ˆby random generation

1) A. T. Brunger and M. Karplus, Proteins, 4, 148 (1988).

2) M. B. Bass,,, R. L. Ornstein, Proteins, 12, 266 (1992).

* The accuracies seem to be similar among three approaches

if scaled values of Ornstein’s data are considered.

FILES Default for <prmtop-file> is "prmtop". The input-pdb-file must have been gener-
ated by LEaP or ambpdb, i.e. it must have exactly the same atoms (in the same
order) as the prmtop file.

13.7. fantasian

A program to evaluate magnetic anisotropy tensor parameters

Ivano Bertini

Depart. of Chemistry, Univ. of Florence, Florence, Italy

3/3/06

fantasian Page 289

e-mail: bertini@risc1.lrm.fi.cnr.it

INPUT FILES:

Observed shifts file (pcshifts.in):

1st column --> residue number

2nd column --> residue name

3rd column --> proton name

4th column --> observed pseudocontact shift value

5th column --> multiplicity of the NMR signal (for example

it is 3 for of a methyl group)

6th column --> relative tolerance

7th column --> relative weight

Amber pdb file (parm.pdb): coordinates file in PDB format. If you need to use a solution NMR
family of structures you have to superimpose the structures before to use them.

OUTPUT FILES:

Observed out file (obs.out): This file is built and read by the program itself, it reports the data read
from the input files.

output file (res.out): The main output file. In this file the result of the fitting is reported. Using
fantasian it is possible to define an internal reference system to visualize the orientation of the
tensor axes. Then in this file you can find PDB format lines (ATOM) which can be included in a
PDB file to visualize the internal reference system and the tensor axes. In the main output file all
the three equivalent permutations of the tensor parameters with respect to the reference system
are reported. The summary of the minimum and maximum errors and that of errorsˆ2 are also
reported.

Example files: in the directory example there are all the files necessary to run a fantasian calcula-
tion:

fantasian.com --> run file

pcshifts.in --> observed shifts file

parm.pdb --> coordinate file in PDB format

obs.out --> data read from input files

res.out --> main output file

13.8. elsize

NAME
elsize − Given the structure, estimates its effective electrostatic size (parameter Arad)
need by the ALPB model.

3/3/06

elsize Page 290

SYNOPSIS

Usage: elsize input-pqr-file [-options]

-det an estimate based on structural invariants. DEFAULT.

-ell an estimate via elliptic integral (numerical).

-elf same as above, but via elementary functions.

-abc prints semi-axes of the effective ellipsoid.

-tab prints all of the above into a table without header.

-hea prints same table as -tab but with a header.

-deb prints same as -tab with some debugging information.

-xyz uses a file containing only XYZ coordinates.

DESCRIPTION
elsize is a program originally written by G. Sigalov to estimate the effective electrostatic
size of a structure via a quick, analytical method. The algorithm is presented in detail in
Ref. [107] You will need your structure in a pqr format as input, which can be easily
obtained from the prmtop and inpcrd files using ambpdb utility described above:
ambpdb -p prmtop -pqr < inpcrd > input-file-pqr . After that you can simply do: elsize
input-file-pqr , the value of electrostatic size in Angstroms will be output on stdout. The
source code is in the src/etc/ directory, its comments contain more extensive decrip-
tion of the options and give an outline of the algorithm. A somewhat less accurate esti-
mate uses just the XYZ coordinates of the molecule and assumes the default radius size
of for all atoms: elsize input-file-xyz . This option is not recommended for very small
compounds. The code should not be used on structures made up of two or more com-
pletely disjoint" compounds -- while the code will still produce a finite value of Arad , it
is not very meaningful. Instead, one should obtain estimates for each compound sepa-
rately.

3/3/06

Appendix A: NAMELIST Page 291

14. Appendices

14.1. Appendix A: Namelist Input Syntax

Namelist provides list-directed input, and convenient specification of default values. It
dates back to the early 1960’s on the IBM 709, but was regrettably not part of Fortran 77. It is a
part of the Fortran 90 standard, and is supported as well by most Fortran 77 compilers (including
g77).

Namelist input groups take the form:

&name

var1=value, var2=value, var3(sub)=value,

var4(sub,sub,sub)=value,value,

var5=repeat*value,value,

/

The variables must be names in the Namelist variable list. The order of the variables in the input
list is of no significance, except that if a variable is specified more than once, later assignments
may overwrite earlier ones. Blanks may occur anywhere in the input, except embedded in con-
stants (other than string constants, where they count as ordinary characters).

It is common in older inputs for the ending "/" to be replaced by "&end"; this is non-stan-
dard-conforming.

Letter case is ignored in all character comparisons, but case is preserved in string constants.
String constants must be enclosed by single quotes (’). If the text string itself contains single
quotes, indicate them by two consecutive single quotes, e.g. C1’ becomes ’C1’’’ as a character
string constant.

Array variables may be subscripted or unsubscripted. An unsubscripted array variable is the
same as if the subscript (1) had been specified. If a subscript list is given, it must have either one
constant, or exactly as many as the number in the declared dimension of the array. Bounds check-
ing is performed for ALL subscript positions, although if only one is given for a multi-dimension
array, the check is against the entire array size, not against the first dimension. If more than one
constant appears after an array assignment, the values go into successive locations of the array. It
is NOT necessary to input all elements of an array.

Any constant may optionally be preceded by a positive (1,2,3,..) integer repeat factor, so
that, for example, 25*3.1415 is equivalent to twenty-five successive values 3.1415. The repeat
count separator, *, may be preceded and followed by 0 or more blanks. Valid LOGICAL con-
stants are 0, F, .F., .FALSE., 1, T, .T., and .TRUE.; lower case versions of these also work.

3/3/06

Appendix B: GROUP Page 292

14.2. Appendix B: GROUP Specification

Entering Group Information

This section describes the format used to define groups of atoms in various AMBER pro-
grams. In sander, a group can be specified as a movable "belly" while the other atoms are fixed
absolutely in space (aside from scaling caused by constant pressure simulation), and/or a group of
movable atoms can independently restrained (held by a potential) at their positions. In anal,
groups can be defined for energy analysis.

Except in the analysis module where different groups of atoms are considered with different
group numbers for energy decomposition, in all other places the groups of atoms defined are
considered as marked atoms to be included for certain types of calculations. In the case of con-
strained minimization or dynamics, the atoms to be constrained are read as groups with a differ-
ent weight for each group.

Reading of groups is performed by the routine RGROUP and you are advised to consult it
if there is still some ambiguity in the documentation.

Input description:

- 1 - Title

format(20a4)

ITITL Group title for identification.

Setting ITITL = ’END’ ends group input.

--

- 1A - Weight

This line is only provided/read when using GROUP input to

define restrained atoms.

format(f)

WT The harmonic force constants in kcal/mol-A**2 for the group

of atoms for restraining to a reference position.

--

- 1B - Control to define the group

KTYPG , (IGRP(I) , JGRP(I) , I = 1,7)

format(a,14i)

KTYPG Type of atom selection performed. A molecule can be

3/3/06

Appendix B: GROUP Page 293

defined by using only ’ATOM’ or ’RES’, or part of the

molecule can be defined by ’ATOM’ and part by ’RES’.

’ATOM’ The group is defined in terms of atom numbers. The atom

number list is given in igrp and jgrp.

’RES’ The group is defined in terms of residue numbers. The

residue number list is given in igrp and jgrp.

’FIND’ This control is used to make additional conditions

(apart from the ’ATOM’ and ’RES’ controls) which a given

atom must satisfy to be included in the current group.

The conditions are read in the next section (1C) and are

terminated by a SEARCH card.

Note that the conditions defined by FIND filter any set(s) of atoms

defined by the following ATOM/RES instructions. For example,

-- group input: select main chain atoms --

FIND

* * M *

SEARCH

RES 1 999

END

END

’END’ End input for the current group. Followed by either another

group definition (starting again with line 1 above), or by a second

’END’ "card", which terminates all group input.

IGRP(I) , JGRP(I)

The atom or residue pointers. If ktypg .eq. ’ATOM’ all

atoms numbered from igrp(i) to jgrp(i) will be put into

the current group. If ktypg .eq. ’RES’ all atoms in the

residues numbered from igrp(i) to jgrp(i) will be put

into the current group. If igrp(i) = 0 the next control

card is read.

It is not necessary to fill groups according to the

numerical order of the residues. In other words, Group 1

could contain residues 40-95 of a protein, Group 2 could

contain residues 1-40 and Group 3 could contain residues

96-105.

If ktypg .eq. ’RES’, then associating a minus sign with

igrp(i) will cause all residues igrp(i) through jgrp(i)

to be placed in separate groups.

3/3/06

Appendix B: GROUP Page 294

In the analysis modules, all atoms not explicitly defined

as members of a group will be combined as a unit in the

(n + 1) group, where the (n) group in the last defined

group.

--

- 1C - Section to read atom characteristics

***** Read only if KTYPG = ’FIND’ *****

JGRAPH(I) , JSYMBL(I) , JTREE(I) , JRESNM(I)

format(4a)

A series of filter specifications are read. Each filter consists

of four fields (JGRAPH,JSYMBL,JTREE,JRESNM), and each filter is placed

on a separate line. Filter specification is terminated by a line with

JGRAPH = ’SEARCH’. A maximum of 10 filters may be specified for a

single ’FIND’ command.

The union of the filter specifications is applied to the atoms defined

by the following ATOM/RES cards. I.e. if an atom satisfies any of the

filters, it will be included in the current group. Otherwise, it is not

included. For example, to select all non main chain atoms from residues

1 through 999:

-- group input: select non main chain atoms --

FIND

* * S *

* * B *

* * 3 *

* * E *

SEARCH

RES 1 999

END

END

’END’ End input for the current group. Followed by either another

The four fields for each filter line are:

JGRAPH(I) The atom name of atom to be included. If this and the

following three characteristics are satisfied the atom is

included in the group. The wild card ’*’ may be used to

to indicate that any atom name will satisfy the search.

JSYMBL(I) Amber atom type of atom to be included. The wild card

’*’ may be used to indicate that any atom type will

3/3/06

Appendix B: GROUP Page 295

satisfy the search.

JTREE(I) The tree name (M, S, B, 3, E) of the atom to be included.

The wild card ’*’ may be used to indicate that any tree

name will satisfy the search.

JRESNM(I) The residue name to which the atom has to belong to be

included in the group. The wild card ’*’ may be used to

indicate that any residue name will satisfy the search.

--

Examples:

The molecule 18-crown-6 will be used to illustrate the group options. This molecule is
composed of six repeating (-CH2-O-CH2-) units. Let us suppose that one created three residues
in the PREP unit: CRA, CRB, CRC. Each of these is a (-CH2-O-CH2-) moiety and they differ by
their dihedral angles. In order to construct 18-crown-6, the residues CRA, CRB, CRC, CRB,
CRC, CRB are linked together during the LINK module with the ring closure being between
CRA(residue 1) and CRB(residue 6).

Input 1:

Title one

RES 1 5

END

Title two

RES 6

END

END

Output 1: Group 1 will contain residues 1 through 5 (CRA, CRB, CRC, CRB, CRC) and Group
2 will contain residue 6 (CRB).

Input 2:

Title one

RES 1 5

END

Title two

ATOM 36 42

END

END

Output 2: Group 1 will contain residues 1 through 5 (CRA, CRB, CRC, CRB, CRC) and Group
2 will contain atoms 36 through 42. Coincidentally, atoms 36 through 42 are also all the atoms in
residue 6.

Input 3:

3/3/06

Appendix B: GROUP Page 296

Title one

RES -1 6

END

END

Output 3: Six groups will be created; Group 1: CRA, Group 2: CRB,..., Group 6: CRB.

Input 4:

Title one

FIND

O2 OS M CRA

SEARCH

RES 1 6

END

END

Output 4: Group 1 will contain those atoms with the atom name ’O2’, atom type ’OS’, tree name
’M’ and residue name ’CRA’.

Input 5:

Title one

FIND

O2 OS * *

SEARCH

RES 1 6

END

END

Output 5: Group 1 will contain those atoms with the atom name ’O2’, atom type ’OS’, any tree
name and any residue name.

14.3. Appendix C: Retired Namelist Variables
Unfortunately, many implementations of Fortran namelist reading do not emit specific

errors for invalid variables. To remedy this situation retired input variables are kept in their
namelist, and a warning is produced in the output file. Listed below are input variables that have
been eliminated since version 7. For each variable the relevant program, namelist, and the version
in which the deletion occurred are specified. A terse description of the original meaning is fol-
lowed by the new behavior.

DOBS Sander &align namelist; retired in version 8. The observed dipolar splitting,
in Hz. Now lower and upper bounds are specified with DOBSL and DOBSU.

3/3/06

Appendix C: RETIRED Page 297

DTEMP Sander &cntrl namelist; retired in version 8. A control of temperature for
NTT = 4 via the reassignment of velocities. Now NTT = 4 is included only
for historical reasons and with reduced functionality.

DXM Sander &cntrl namelist; retired in version 8. The maximum step length in
an energy minimization. Now no limit on the step length exists. In fact, this
behavior is identical to that in Amber 7 since DXM was unused.

FRC_INT Sander &ewald namelist; retired in version 8. A control of the computation
of forces in PME. Now forces cannot be obtained by interpolation; the forces
are always calculated via differentiation of the energy.

HEAT Sander &cntrl namelist; retired in version 8. The initial velocities scaling
factor for temperature regulation. Now the initial velocities are controlled
solely by TEMPI.

ISCHRGD Sander &ewald namelist; retired in version 8. The control of charge neutral-
ization in a unit cell. Now an insignificant nonzero net charge, one less than
or equal to 0.01, is assumed to be due to roundoff error and is always neutral-
ized. In fact, this behavior is identical to that in Amber 7 since ISCHRGD
was silently ignored.

MATCAP Sander &cntrl namelist; retired in version 8. The modified cap atom
pointer. Now the cap atom pointer in the prmtop cannot be modified.

NTU Sander &cntrl namelist; retired in version 8. The behavior is identical to
that in Amber 7 since NTU was reset to 1 even if it appeared in the namelist.

PLEVEL Sander &cntrl namelist; retired in version 8. The parallelization level for
constant pressure simulations. Now all the atoms of a small molecule are
assigned to a single processor, and, consequently, the velocities do not need to
be distributed to compute the correct virial.

TIMLIM Sander &cntrl namelist; pbsa &cntrl namelist; retired in version 9. The
execution time limit, in seconds, for the job. Now no limit on the execution
time exists. In fact, this behavior is identical to that in Amber 7 and 8 since
TIMLIM was unused.

NPSCAL Sander &cntrl namelist; retired in version 9. This controls the way in which
pressure scaling takes place. The only valid value now is "1", which invokes a
center-of-mass scaling. This is really no change, since atom-based scaling
was nev er correctly implemented. (Note that scaling in the amoeba_runmd
code does use atom-based model, since it has a atom-based virial; but this
behavior is not controlled by the npscal input variable.)

3/3/06

References Page 298

15. References

1. V. Hornak, A. Okur, R. Rizzo and C. Simmerling. HIV-1 protease flaps spontaneously
open and reclose in molecular dynamics simulations. Proc. Nat. Acad. Sci. USA
103, 915-920 (2006).

2. V. Hornak, A. Okur, R. Rizzo and C. Simmerling. HIV-1 protease flaps spontaneously
close when an inhibitor binds to the open state. J. Am. Chem. Soc. 128, 281-2813 (2006).

3. D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, III, S. DeBolt, D.
Ferguson, G. Seibel and P. Kollman. AMBER, a package of computer programs for apply-
ing molecular mechanics, normal mode analysis, molecular dynamics and free energy cal-
culations to simulate the structural and energetic properties of molecules. Comp. Phys.
Commun. 91, 1-41 (1995).

4. D.A. Case, T. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, Jr., A. Onufriev, C.
Simmerling, B. Wang and R. Woods. The Amber biomolecular simulation programs. J.
Computat. Chem. 26, 1668-1688 (2005).

5. J.W. Ponder and D.A. Case. Force fields for protein simulations. Adv. Prot. Chem.
66, 27-85 (2003).

6. L. Yang, C. Tan, J. Wang, Y. Duan, P. Cieplak, J. Caldwell, P. Kollman and R. Luo. Amber
united atom force field. (submitted for publication). (2005).

7. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollamn and D.A. Case. Development and test-
ing of a general Amber force field. J. Comput. Chem. 25, 1157-1174 (2004).

8. P. Ren and J.W. Ponder. Consistent treatment of inter- and intramolecular polarization in
molecular mechanics calculations. J. Comput. Chem. 23, 1497-1506 (2002).

9. P. Ren and J.W. Ponder. Temperature and pressure dependence of the AMOEBA water
model. J. Phys. Chem. B 108, 13427-13437 (2004).

10. T. Kruger, M. Elstner, P. Schiffels and T. Frauenheim. Validation of the density-functional
based tight-binding approximation. J. Chem. Phys. 122, 114110 (2005).

11. J. Mongan, C. Simmerling, J. A. McCammon, D. A. Case and A. Onufriev. Generalized
Born with a simple, robust molecular volume correction. (submitted for publication)
(2006).

12. S. Harvey and J.A. McCammon. Dynamics of Proteins and Nucleic Acids. Cambridge:
Cambridge University Press, (1987).

13. A.R. Leach. Molecular Modelling. Principles and Applications, Second Edition. Harlow,
England: Prentice-Hall, (2001).

14. M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Oxford: Clarendon
Press, (1987).

15. D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to Appli-
cations. Second edition. San Diego: Academic Press, (2002).

16. W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, eds.. Computer Simulations of
Biomolecular Systems, Vol. 3.. Leiden: ESCOM Science Publishers, (1997).

17. L.R. Pratt and G. Hummer, eds.. Simulation and Theory of Electrostatic Interactions in
Solution. Melville, NY: American Institute of Physics, (1999).

3/3/06

References Page 299

18. O. Becker, A.D. MacKerell, B. Roux and M. Watanabe, eds.. Computational Biochemistry
and Biophysics. New York: Marcel Dekker, (2001).

19. J.J. Vincent and K.M. Merz, Jr.. A highly portable parallel implementation of AMBER4
using the message passing interface standard. J. Comput. Chem. 16, 1420-1427 (1995).

20. T. E. Cheatham, III, B. R. Brooks and P. A. Kollman. Molecular modeling of nucleic acid
structure. In Current Protocols in Nucleic Acid Chemistry, New York: Wiley, (1999).
pp. Sections 7.5, 7.8, 7.9, 7.10.

21. R. Geney, M. Layten, R. Gomperts and C. Simmerling. Investigation of salt bridge stabil-
ity in a generalized Born solvent model. J. Chem. Theory Comput. 2, 115-127 (2006).

22. A. Okur, L. Wickstrom, M. Layten, R. Geney, K. Song, V. Hornak and C. Simmer-
ling. Improved efficiency of replica exchange simulations through use of a hybrid
explicit/implicit solvation model. J. Chem. Theory Comput. in press, (2006).

23. Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R.
Luo and T. Lee. A point-charge force field for molecular mechanics simulations of pro-
teins based on condensed-phase quantum mechanical calculations. J. Comput. Chem.
24, 1999-2012 (2003).

24. M.C. Lee and Y. Duan. Distinguish protein decoys by using a scoring function based on a
new Amber force field, short molecular dynamics simulations, and the generalized Born
solvent model. Proteins 55, 620-634 (2004).

25. J. Wang, P. Cieplak and P.A. Kollman. How well does a restrained electrostatic potential
(RESP) model perform in calculating conformational energies of organic and biological
molecules?. J. Comput. Chem. 21, 1049-1074 (2000).

26. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg and C. Simmerling. Comparison
of multiple Amber force fields and development of improved protein backbone parame-
ters. Submitted for publication. (2006).

27. A.E. García and K.Y. Sanbonmatsu. α -helical stabilization by side chain shielding of
backbone hydrogen bonds. Proc. Natl. Acad. Sci. USA 99, 2782-2787 (2002).

28. E.J. Sorin and V.S. Pande. Exploring the helix-coil transition via all-atom equilibrium
ensemble simulations. Biophys. J. 88, 2472-2493 (2005).

29. P. Cieplak, J. Caldwell and P. Kollman. Molecular mechanical models for organic and bio-
logical systems going beyond the atom centered two body additive approximation: Aque-
ous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and
amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid
bases. J. Comput. Chem. 22, 1048-1057 (2001).

30. Z.-X. Wang, W. Zhang, C. Wu, H. Lei, P. Cieplak and Y. Duan. Strike a Balance: opti-
mization of backbone torsion parameters of AMBER polarizable force field (ff02pol) for
simulations of proteins and peptides. J. Comput. Chem. (in press)., (2005).

31. R.W. Dixon and P.A. Kollman. Advancing beyond the atom-centered model in additive
and nonadditive molecular mechanics. J. Comput. Chem. 18, 1632-1646 (1997).

32. E. Meng, P. Cieplak, J.W. Caldwell and P.A. Kollman. Accurate solvation free energies of
acetate and methylammonium ions calculated with a polarizable water model. J. Am.
Chem. Soc. 116, 12061-12062 (1994).

33. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, Jr., D.M. Ferguson, D.C.
Spellmeyer, T. Fox, J.W. Caldwell and P.A. Kollman. A second generation force field for

3/3/06

References Page 300

the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc.
117, 5179-5197 (1995).

34. P.A. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot and A. Pohorille. The develop-
ment/application of a ’minimalist’ organic/biochemical molecular mechanic force field
using a combination of ab initio calculations and experimental data. In Computer Simula-
tion of Biomolecular Systems, Vol. 3, A. Wilkinson, P. Weiner and W.F. van Gunsteren, Ed.
Elsevier, (1997). pp. 83-96.

35. M.D. Beachy and R.A. Friesner. Accurate ab intio quantum chemical determination of the
relative energies of peptide conformations and assessment of empirical force fields. J. Am.
Chem. Soc. 119, 5908-5920 (1997).

36. L. Wang, Y. Duan, R. Shortle, B. Imperiali and P.A. Kollman. Study of the stability and
unfolding mechanism of BBA1 by molecular dynamics simulations at different tempera-
tures. Prot. Sci. 8, 1292-1304 (1999).

37. J. Higo, N. Ito, M. Kuroda, S. Ono, N. Nakajima and H. Nakamura. Energy landscape of a
peptide consisting of α -helix, 310 helix, β -turn, β -hairpin and other disordered conforma-

tions. Prot. Sci. 10, 1160-1171 (2001).

38. T.E. Cheatham, III, P. Cieplak and P.A. Kollman. A modified version of the Cornell et al.
force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn.
16, 845-862 (1999).

39. S.J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profeta, Jr. and
P. Weiner. A new force field for molecular mechanical simulation of nucleic acids and pro-
teins. J. Am. Chem. Soc. 106, 765-784 (1984).

40. S.J. Weiner, P.A. Kollman, D.T. Nguyen and D.A. Case. An all-atom force field for simu-
lations of proteins and nucleic acids. J. Comput. Chem. 7, 230-252 (1986).

41. U.C. Singh, S.J. Weiner and P.A. Kollman. Molecular dynamics simulations of d(C-G-C-
G-A).d(T-C-G-C-G) with and without "hydrated" counterions. Proc. Nat. Acad. Sci.
82, 755-759 (1985).

42. K.N. Kirschner and R.J. Woods. Solvent interactions determine carbohydrate conforma-
tion. Proc. Natl. Acad. Sci. USA 98, 10541-10545 (2001).

43. M. Basma, S. Sundara, D. Calgan, T. Venali and R.J. Woods. Solvated ensemble averaging
in the calculation of partial atomic charges. J. Comput. Chem. 22, 1125-1137 (2001).

44. K.N. Kirschner, R.J. Woods and Quantum mechanical study of the nonbonded forces in
water-methanol complexes. J. Phys. Chem. A 105, 4150-4155 (2001).

45. J. Åqvist. Ion-water interaction potentials derived from free energy perturbation simula-
tions. J. Phys. Chem. 94, 8021-8024 (1990).

46. T. Darden, D. Pearlman and L.G. Pedersen. Ionic charging free energies: Spherical versus
periodic boundary conditions. J. Chem. Phys. 109, 10921-10935 (1998).

47. W.L. Jorgensen, J. Chandrasekhar, J. Madura and M.L. Klein. Comparison of simple
potential functions for simulating liquid water. J. Chem. Phys. 79, 926-935 (1983).

48. W.L. Jorgensen and J.D. Madura. Temperature and size dependence for Monte Carlo simu-
lations of TIP4P water. Mol. Phys. 56, 1381-1392 (1985).

49. M.W. Mahoney and W.L. Jorgensen. A five-site model for liquid water and the reproduc-
tion of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys.
112, 8910-8922 (2000).

3/3/06

References Page 301

50. J.W. Caldwell and P.A. Kollman. Structure and properties of neat liquids using nonadditive
molecular dynamics: Water, methanol and N-methylacetamide. J. Phys. Chem.
99, 6208-6219 (1995).

51. H.J.C. Berendsen, J.R. Grigera and T.P. Straatsma. The missing term in effective pair
potentials. J. Phys. Chem. 91, 6269-6271 (1987).

52. V. Tsui and D.A. Case. Theory and applications of the generalized Born solvation model
in macromolecular simulations. Biopolymers (Nucl. Acid. Sci.) 56, 275-291 (2001).

53. V. Tsui and D.A. Case. Molecular dynamics simulations of nucleic acids using a general-
ized Born solvation model. J. Am. Chem. Soc. 122, 2489-2498 (2000).

54. A. Onufriev, D. Bashford and D.A. Case. Exporling protein native states and large-scale
conformational changes with a modified generalized Born model. Proteins 55, 383-394
(2004).

55. J. Wang, W. Wang, P.A. Kollman and D.A. Case. Antechamber, an accessory software
package for molecular mechanics calculations.. J. Mol. Graphics Model. 25, 247-260
(2006).

56. A. Jakalian, B.L. Bush, D.B. Jack and C.I. Bayly. Fast, efficient generation of high-quality
atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132-146 (2000).

57. A. Jakalian, D.B. Jack and C.I. Bayly. Fast, efficient generation of high-quality atomic
charges. AM1-BCC model: II. Parameterization and Validation. J. Comput. Chem.
23, 1623-1641 (2002).

58. J. Wang and P.A. Kollman. Automatic parameterization of force field by systematic search
and genetic algorithms. J. Comput. Chem. 22, 1219-1228 (2001).

59. W.C. Still, A. Tempczyk, R.C. Hawley and T. Hendrickson. Semianalytical treatment of
solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127-6129
(1990).

60. T. Darden, D. York and L. Pedersen. Particle mesh Ewald--an Nlog(N) method for Ewald
sums in large systems. J. Chem. Phys. 98, 10089-10092 (1993).

61. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee and L.G. Pedersen. A smooth
particle mesh Ewald method. J. Chem. Phys. 103, 8577-8593 (1995).

62. M.F. Crowley, T.A. Darden, T.E. Cheatham, III and D.W. Deerfield, II. Adventures in
improving the scaling and accuracy of a parallel molecular dynamics program. J. Super-
comput. 11, 255-278 (1997).

63. C. Sagui and T.A. Darden. P3M and PME: a comparison of the two methods. In Simula-
tion and Theory of Electrostatic Interactions in Solution, L.R. Pratt and G. Hummer, Ed.
Melville, NY: American Institute of Physics, (1999). pp. 104-113.

64. A. Toukmaji, C. Sagui, J. Board and T. Darden. Efficient particle-mesh Ewald based
approach to fixed and induced dipolar interactions. J. Chem. Phys. 113, 10913-10927
(2000).

65. G.D. Hawkins, C.J. Cramer and D.G. Truhlar. Pairwise solute descreening of solute
charges from a dielectric medium. Chem. Phys. Lett. 246, 122-129 (1995).

66. G.D. Hawkins, C.J. Cramer and D.G. Truhlar. Parametrized models of aqueous free ener-
gies of solvation based on pairwise descreening of solute atomic charges from a dielectric
medium. J. Phys. Chem. 100, 19824-19839 (1996).

3/3/06

References Page 302

67. M. Schaefer and C. Froemmel. A precise analytical method for calculating the electro-
static energy of macromolecules in aqueous solution. J. Mol. Biol. 216, 1045-1066
(1990).

68. M. Schaefer, H.W.T. Van Vlijmen and M. Karplus. Electrostatic contributions to molecu-
lar free energies in solution.. Adv. Protein Chem. 51, 1-57 (1998).

69. D. Bashford and D.A. Case. Generalized Born models of macromolecular solvation
effects. Annu. Rev. Phys. Chem. 51, 129-152 (2000).

70. A. Bondi. van der Waals volumes and radii. J. Phys. Chem. 68, 441-451 (1964).

71. J. Srinivasan, M.W. Trevathan, P. Beroza and D.A. Case. Application of a pairwise gener-
alized Born model to proteins and nucleic acids: inclusion of salt effects. Theor. Chem.
Acc. 101, 426-434 (1999).

72. J. Weiser, P.S. Shenkin and W.C. Still. Approximate atomic surfaces from linear combina-
tions of pairwise overlaps (LCPO). J. Comput. Chem. 20, 217-230 (1999).

73. R.C. Walker, M.F. Crowley and D.A. Case. The implementation of a fast and efficient
hybrid QM/MM potential method within The Amber 9.0 sander module. (in preparation)
(2006).

74. M.J.S. Dewar and W. Thiel. Ground states of molecules. 38. The MNDO method, approxi-
mations and parameters. J. Am. Chem. Soc. 99, 4899-4907 (1977).

75. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy and J.J.P. Stewart. AM1: A new general purpose
quamntum mechanical molecular model. J. Am. Chem. Soc. 107, 3902-3909 (1985).

76. J.J.P. Stewart. Optimization of parameters for semiempirical methods I. Method.. J. Com-
put. Chem. 10, 209-220 (1989).

77. M.P. Repasky, J. Chandrasekhar and W.L. Jorgensen. PDDG/PM3 and PDDG/MNDO:
Improved semiempirical methods. J. Comput. Chem. 23, 1601-1622 (2002).

78. J.P. McNamara, A.M. Muslim, H. Abdel-Aal, H. Wang, M. Mohr, I.H. Hillier and R.A.
Bryce. Tow ards a quantum mechanical force field for carbohydrates: A reparameterized
semiempirical MO approach. Chem. Phys. Lett. 394, 429-436 (2004).

79. E. Pellegrini and M. J. Field. A generalized-Born solvation model for macromolecular
hybrid-potential calculations. J. Phys. Chem. A. 106, 1316-1326 (2002).

80. K. Nam, J. Gao and D. York. An efficient linear-scaling Ewald method for long-range
electrostatic interactions in combined QM/MM calculations. J. Chem. Theory Comput.
1, 2-13 (2005).

81. X. Wu and B.R. Brooks. Self-guided Langevin dynamics simulation method. Chem.
Phys. Lett. 381, 512-518 (2003).

82. T. Morishita. Fluctuation formulas in molecular-dynamics simulations with the weak cou-
pling heat bath. J. Chem. Phys. 113, 2976 (2000).

83. A. Mudi and C. Chakravarty. Effect of the Berendsen thermostat on the dynamical proper-
ties of water. Mol. Phys. 102, 681-685 (2004).

84. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola and J.R. Haak. Molecu-
lar dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684-3690 (1984).

85. S.C. Harvey, R.K. Tan and T.E. Cheatham, III. The flying ice cube: Velocity rescaling in
molecular dynamics leads to violation of energy equipartition.. J. Comput. Chem.
19, 726-740 (1998).

3/3/06

References Page 303

86. T.A. Andrea, W.C. Swope and H.C. Andersen. The role of long ranged forces in determin-
ing the structure and properties of liquid water. J. Chem. Phys. 79, 4576-4584 (1983).

87. H.C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature.
J. Chem. Phys. 72, 2384-2393 (1980).

88. R.W. Pastor, B.R. Brooks and A. Szabo. An analysis of the accuracy of Langevin and
molecular dynamics algorithms. Mol. Phys. 65, 1409-1419 (1988).

89. R.J. Loncharich, B.R. Brooks and R.W. Pastor. Langevin dynamics of peptides: The fric-
tional dependence of isomerization rates of N-actylananyl-N’-methylamide. Biopolymers
32, 523-535 (1992).

90. J.A. Izaguirre, D.P. Catarello, J.M. Wozniak and R.D. Skeel. Langevin stabilization of
molecular dynamics. J. Chem. Phys. 114, 2090-2098 (2001).

91. J.-P. Ryckaert, G. Ciccotti and H.J.C. Berendsen. Numerical integration of the cartesian
equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J.
Comput. Phys. 23, 327-341 (1977).

92. S. Miyamoto and P.A. Kollman. SETTLE: An analytical version of the SHAKE and RAT-
TLE algorithm for rigid water models. J. Comput. Chem. 13, 952-962 (1992).

93. X. Wu and B.R. Brooks. Isotropic periodic sum: A method for the calculation of long-
range interactions. J. Chem. Phys. 122, 044107 (2005).

94. M. Schaefer and M. Karplus. A comprehensive analytical treatment of continuum electro-
statics. J. Phys. Chem. 100, 1578-1599 (1996).

95. S.R. Edinger, C. Cortis, P.S. Shenkin and R.A. Friesner. Solvation free energies of pep-
tides: Comparison of approximate continuum solvation models with accurate solution of
the Poisson-Boltzmann equation. J. Phys. Chem. B 101, 1190-1197 (1997).

96. B. Jayaram, D. Sprous and D.L. Beveridge. Solvation free energy of biomacromolecules:
Parameters for a modified generalized Born model consistent with the AMBER force
field. J. Phys. Chem. B 102, 9571-9576 (1998).

97. C.J. Cramer and D.G. Truhlar. Implicit solvation models: Equilibria, structure, spectra, and
dynamics. Chem. Rev. 99, 2161-2200 (1999).

98. A. Onufriev, D. Bashford and D.A. Case. Modification of the generalized Born model suit-
able for macromolecules. J. Phys. Chem. B 104, 3712-3720 (2000).

99. M.S. Lee, F.R. Salsbury, Jr. and C.L. Brooks, III. Novel generalized Born methods. J.
Chem. Phys. 116, 10606-10614 (2002).

100. B.N. Dominy and C.L. Brooks, III. Development of a generalized Born model parameteri-
zation for proteins and nucleic acids. J. Phys. Chem. B 103, 3765-3773 (1999).

101. N. Calimet, M. Schaefer and T. Simonson. Protein molecular dynamics with the general-
ized Born/ACE solvent model. Proteins 45, 144-158 (2001).

102. A. Onufriev, D.A. Case and D. Bashford. Effective Born radii in the generalized Born
approximation: The importance. J. Comput. Chem. 23, 1297-1304 (2002).

103. F.M. Richards. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bio-
eng. 6, 151-176 (1977).

104. M. Feig, A. Onufriev, M. Lee, W. Im, D. A. Case and C. L. Brooks, III. Performance
comparison of the generalized Born and Poisson methods in the calculation of the electro-
static solvation energies for protein structures. J. Comput. Chem. 25, 265-284 (2004).

3/3/06

References Page 304

105. D. Sitkoff, K.A. Sharp and B. Honig. Accurate calculation of hydration free energies using
macroscopic solvent models. J. Phys. Chem. 98, 1978-1988 (1994).

106. A. Onufriev, P. Scheffel and G. Sigalov. Incorporating variable environments into the gen-
erlized Born model. J. Chem. Phys. 122, 094511 (2005).

107. A. Onufriev, A. Fenley and G. Sigalov. Analytical linearized Poisson-Boltzmann
approach: Beyond the generalized Born approximation. J. Chem. Phys. (submitted for
publication), (2006).

108. R. Luo, L. David and M.K. Gilson. Accelerated Poisson-Boltzmann calculations for static
and dynamic systems. J. Comput. Chem. 23, 1244-1253 (2002).

109. Q. Lu and R. Luo. A Poisson-Boltzmann dynamics method with nonperiodic boundary
condition. J. Chem. Phys. 119, 11035-11047 (2003).

110. B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry. Science
268, 1144-1149 (1995).

111. K.A. Sharp and B. Honig. Electrostatic interactions in macromolecules: Theory and exper-
iment. Annu. Rev. Biophys. Biophys. Chem. 19, 301-332 (1990).

112. M.E. Davis and J.A. McCammon. Electrostatics in biomolecular structure and dynamics.
Chem. Rev. 90, 509-521 (1990).

113. M.K. Gilson, K.A. Sharp and B.H. Honig. Calculating the electrostatic potential of
molecules in solution: method. J. Comput. Chem. 9, 327-35 (1988).

114. J. Warwicker and H.C. Watson. Calculation of the electric potential in the active site cleft
due to. J. Mol. Biol. 157, 671-679 (1982).

115. I. Klapper, R. Hagstrom, R. Fine, K. Sharp and B. Honig. Focussing of electric fields in
the active stie of Cu, Zn superoxide dismutase. Proteins 1, 47-59 (1986).

116. E. Gallicchio, M.M. Kubo and R.M. Levy. Enthalpy-entropy and cavity decomposition of
alkane hydration free energies: Numerical results and implications for theories of
hydrophobic solvation. J. Phys. Chem. 104, 6271-6285 (2000).

117. F. Floris and J. Tomasi. Evaluation of the dispersion contribution to the solvation energy.
A simple computational model in the continuum approximation. J. Comput. Chem.
10, 616-627 (1989).

118. M.E. Davis and J.A. McCammon. Solving the finite-difference linearized Poisson-Bolt-
mann equation -- a comparison of relaxation and conjugate gradient methods. J. Comput.
Chem. 10, 386-391 (1989).

119. A. Nicholls and B. Honig. A rapid finite difference algorithm, utilizing successive over-
relaxation to solve the Poisson-Boltzmann equation. J. Comput. Chem. 12, 435-445
(1991).

120. D. Bashford. An object-oriented programming suite for electrostatic effects in biological
molecules. Lect. Notes Comput. Sci. 1343, 233-240 (1997).

121. M.E. Davis and J.A. McCammon. Dielectric boundary smoothing in finite difference solu-
tions of the Poisson equation: An approach to improve accuracy and convergence. J.
Comput. Chem. 12, 909-912 (1991).

122. B.A. Luty, M.E. Davis and J.A. McCammon. Electrostatic energy calculations by a finite-
difference method: Rapid calculation of charge-solvent interaction energies. J. Comput.
Chem. 13, 768-771 (1992).

3/3/06

References Page 305

123. D. Porezag, T. Frauenheim, T. Kohler, G. Seifert and R. Kaschner. Construction of tight-
binding-like potentials on the basis of density-functional-theory: Applications to carbon.
Phys. Rev. B 51, 12947 (1995).

124. G. Seifert, D. Porezag and T. Frauenheim. Calculations of molecules, cluters and solids
with a simplified LCAO-DFT-LDA scheme. Int. J. Quantum Chem. 58, 185 (1996).

125. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai and
G. Seifert. Self-consistent charge density functional tight-binding method for simulation of
complex material properties. Phys. Rev. B 58, 7260 (1998).

126. M. Elstner, P. Hobza, T. Frauenheim, S. Suhai and E. Kaxiras. Hydrogen bonding and
stacking interactions of nucleic acid base pairs: a density-functional-theory based treat-
ment. J. Chem. Phys. 114, 5149 (2001).

127. P. Kollman. Free energy calculations: Applications to chemical and biochemical phenom-
ena. Chem. Rev. 93, 2395-2417 (1993).

128. T. Simonson. Free energy calculations. In Computational Biochemistry and Biophysics,
O. Becker, A.D. MacKerell, B. Roux and M. Watanabe, Ed. New York: Marcel Dekker,
(2001).

129. G. Hummer and A. Szabo. Calculation of free-energy differences from computer simula-
tions of initial and final states. J. Chem. Phys. 105, 2004-2010 (1996).

130. J.P. Valleau and G.M. Torrie. In Modern Theoretical Chemistry, Vol. 5: Statistical Mechan-
ics, Part A, Equilibrium Techniques, B.J. Berne, Ed. New York: Plenum Press, (1977).

131. J. Kottalam and D.A. Case. Dynamics of ligand escape from the heme pocket of myo-
globin. J. Am. Chem. Soc. 110, 7690-7697 (1988).

132. S. Kumar, D. Bouzida, R.H. Swendsen, P.A. Kollman and J.M. Rosenberg. The weighted
histogram analysis method for free-energy calculations on biomolecules. I. The method.
J. Comput. Chem. 13, 1011-1021 (1992).

133. S. Kumar, J.M. Rosenberg, D. Bouzida, R.H. Swendsen and P.A. Kollman. Multidimen-
sional free-energy calculations using the weighted histogram analysis method. J. Comput.
Chem. 16, 1339-1350 (1995).

134. B. Roux. The calculation of the potential of mean force using computer simulations.
Comput. Phys. Comm. 91, 275-282 (1995).

135. M.O. Jensen, S. Park, E.Tajkhorshid and K. Schulten. Energetics of glycerol conduction
through aquaglyceroporin GlpF. Proc. Natl. Acad. Sci. USA 99, 6731-6736 (2002).

136. A. Crespo, M.A. Marti, D.A. Estrin and A.E. Roitberg. Multiple-steering QM-MM calcu-
lation of the free energy profile in chorismate mutase. J. Am. Chem. Soc. 127, 6940-6941
(2005).

137. C. Jarzynski and Nonequilibrium equality for free energy differences. Phys. Rev. Lett.
78, 2690-2693 (1997).

138. G. Hummer and A. Szabo. Free energy reconstruction from nonequilibrium single-
molecule pulling experiments. Proc. Natl. Acad. Sci. USA 98, 3658 (2001).

139. G. Hummer and A. Szabo. Kinetics from nonequilibrium single-molecule pulling experi-
ments. Biophys. J. 85, 5-15 (2003).

140. A. Mitsutake, Y. Sugita and Y. Okamoto. Generalized-ensemble algorithms for molecular
simulations of biopolymers. Biopolymers 60, 96-123 (2001).

3/3/06

References Page 306

141. H. Nymeyer, S. Gnanakaran and A.E García. Atomic simulations of protein folding using
the replica exchange algorithm. Meth. Enzymol. 383, 119-149 (2004).

142. X. Cheng, G. Cui, V. Hornak and C. Simmerling. Modified replica exchange simulation
methods for local structure refinement. J. Phys. Chem. B 109, 8220-8230 (2005).

143. G. Mills and H. Jónsson. Quantum and thermal effects in H2 dissociative adsorption: Eval-

uation of free energy barriers in multidimensional quantum systems. Phys. Rev. Lett.
72, 1124-1127 (1994).

144. H. Jónsson, G. Mills and K.W. Jacobsen. Nudged elastic band method for finding mini-
mum energy paths of transitions. In Classical and Quantum Dynamics in Condensed
Phase Simulations, B.J. Berne, G. Ciccoti and D.F. Coker, Ed. Singapore: World Scientific,
(1998). pp. 385-404.

145. R. Elber and M. Karplus M. A method for determining reaction paths in large molecules:
Application to myoglobin. Chem. Phys. Lett. 139, 375-380 (1987).

146. G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged elastic band
method for finding minimum energy paths and saddle points. J. Chem. Phys.
113, 9978-9985 (2000).

147. G. Henkelman, B.P. Uberuaga and H. Jónsson. A climbing image nudged elastic band
method for finding saddle points and minimum energy paths. J. Chem. Phys.
113, 9901-9904 (2000).

148. J. Chu, B.L. Trout and B.R. Brooks. A super-linear minimization scheme for the nudged
elastic band method. J. Chem. Phys. 119, 12708-12717 (2003).

149. D.H. Mathews and D.A. Case. Nudged Elastic Band calculation of minimal energy path-
ways for the conformational change of a GG mismatch. J. Mol. Biol. (in press), (2006).

150. J. Mongan, D.A. Case and J.A. McCammon. Constant pH molecular dynamics in general-
ized Born implicit solvent. J. Comput. Chem. 25, 2038-2048 (2004).

151. B.M. Duggan, G.B. Legge, H.J. Dyson and P.E. Wright. SANE (Structure Assisted NOE
Evaluation): An automated model-based approach for NOE assignment. J. Biomol. NMR
19, 321-329 (2001).

152. A. Kalk and H.J.C. Berendsen. Proton magnetic relaxation and spin diffusion in proteins.
J. Magn. Reson. 24, 343-366 (1976).

153. E.T. Olejniczak and M.A. Weiss. Are methyl groups relaxation sinks in small proteins?.
J. Magn. Reson. 86, 148-155 (1990).

154. K.J. Cross and P.E. Wright. Calibration of ring-current models for the heme ring. J.
Magn. Reson. 64, 220-231 (1985).

155. K. Ösapay and D.A. Case. A new analysis of proton chemical shifts in proteins. J. Am.
Chem. Soc. 113, 9436-9444 (1991).

156. D.A. Case. Calibration of ring-current effects in proteins and nucleic acids. J. Biomol.
NMR 6, 341-346 (1995).

157. L. Banci, I. Bertini, G. Gori-Savellini, A. Romagnoli, P. Turano, M.A. Cremonini, C.
Luchinat and H.B. Gray. Pseudocontact shifts as constraints for energy minimization and
molecular dynamics calculations on solution structures of paramagnetic metalloproteins.
Proteins 29, 68 (1997).

158. C.R. Sanders, II, B.J. Hare, K.P. How ard and J.H. Prestegard. Magnetically-oriented phos-
pholipid micelles as a tool for the study of membrane-associated molecules. Prog. NMR

3/3/06

References Page 307

Spectr. 26, 421-444 (1994).

159. V. Tsui, L. Zhu, T.H. Huang, P.E. Wright and D.A. Case. Assessment of zinc finger orien-
tations by residual dipolar coupling constants. J. Biomol. NMR 16, 9-21 (2000).

160. D.A. Case. Calculations of NMR dipolar coupling strengths in model peptides. J. Biomol.
NMR 15, 95-102 (1999).

161. G.P. Gippert, P.F. Yip, P.E. Wright and D.A. Case. Computational methods for determining
protein structures from NMR data. Biochem. Pharm. 40, 15-22 (1990).

162. D.A. Case and P.E. Wright. Determination of high resolution NMR structures of proteins.
In NMR in Proteins, G.M. Clore and A. Gronenborn, Ed. New York: MacMillan, (1993).
pp. 53-91.

163. D.A. Case, H.J. Dyson and P.E. Wright. Use of chemical shifts and coupling constants in
nuclear magnetic resonance structural studies on peptides and proteins. Meth. Enzymol.
239, 392-416 (1994).

164. R. Brüschweiler and D.A. Case. Characterization of biomolecular structure and dynamics
by NMR cross-relaxation. Prog. NMR Spectr. 26, 27-58 (1994).

165. D.A. Case. The use of chemical shifts and their anisotropies in biomolecular structure
determination. Curr. Opin. Struct. Biol. 8, 624-630 (1998).

166. D.S. Wishart and D.A. Case. Use of chemical shifts in macromolecular structure determi-
nation.. Meth. Enzymol. 338, 3-34 (2001).

167. A.E. Torda, R.M. Scheek and W.F. VanGunsteren. Time-dependent distance restraints in
molecular dynamics simulations. Chem. Phys. Lett. 157, 289-294 (1989).

168. D.A. Pearlman and P.A. Kollman. Are time-averaged restraints necessary for nuclear mag-
netic resonance refinement? A model study for DNA. J. Mol. Biol. 220, 457-479 (1991).

169. A.E. Torda, R.M. Brunne, T. Huber, H. Kessler and W.F. van Gunsteren. Structure refine-
ment using time-averaged J-coupling constant restraints. J. Biomol. NMR 3, 55-66
(1993).

170. D.A. Pearlman. How well to time-averaged J-coupling restraints work?. J. Biomol. NMR
4, 279-299 (1994).

171. D.A. Pearlman. How is an NMR structure best defined? An analysis of molecular dynam-
ics distance-based approaches. J. Biomol. NMR 4, 1-16 (1994).

172. R.P. Feynman and A.R. Hibbs. Quantum Mechanics and Path Integrals. New York:
McGraw-Hill, (1965).

173. R.P. Feynman. Statistcal Mechanics. Reading, MA: Benjamin, (1972).

174. H. Kleinert. Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics. Sin-
gapore: World Scientific, (1995).

175. L.S. Schulman. Techniques and Applications of Path Integration. New York: Wiley &
Sons, (1996).

176. D. Chandler and P.G. Wolynes. Exploiting the isomorphism between quantum theory and
classical statistical mechanics of polyatomic fluids. J. Chem. Phys. 74, 4078-4095
(1981).

177. D.M. Ceperley. Path integrals in the theory of condensed helium. Rev. Mod. Phys.
67, 279-355 (1995).

3/3/06

References Page 308

178. J. Cao and B.J. Berne. On energy estimators in path integral Monte Carlo simulations:
Dependence of accuracy on algorithm. J. Chem. Phys. 91, 6359-6366 (1989).

179. P.Y. Ren and J.W. Ponder. Polarizable atomic multipole water model for molecular
mechanics simulation. J. Phys. Chem. B 107, 5933-5947 (2003).

180. P.Y. Ren and J.W. Ponder. Tinker polarizable atomic multipole force field for proteins. to
be published. ().

181. C. Sagui, L.G. Pedersen and T.A. Darden. To wards an accurate representation of electro-
statics in classical force fields: Efficient implementation of multipolar interactions in
biomolecular simulations. J. Chem. Phys. 120, 73-87 (2004).

182. W. Yang and T.-S. Lee. A density-matrix divide-and-conquer approach for electronic
structure calculations of large molecules. J. Chem. Phys. 103, 5674-5678 (1995).

183. S.L. Dixon and K.M. Merz, Jr.. Semiempirical molecular orbital calculations with linear
system size scaling. J. Chem. Phys. 104, 6643-6649 (1996).

184. S.L. Dixon and K.M. Merz, Jr.. Fast, accurate semiempirical molecular orbital calculations
for macromolecules. J. Chem. Phys. 107, 879-893 (1997).

185. J.W. Storer, D.J. Giesen, C.J. Cramer and D.G. Truhlar. Class IV charge models: A new
semiempirical approach in quantum chemistry. J. Comput.-Aided Mol. Design 9, 87-110
(1995).

186. J. Li, C.J. Cramer and D.G. Truhlar. New class IV charge model for extracting accurate
partial charges from Wav e Functions. J. Phys. Chem. A. 102, 1820-1831 (1998).

187. A.V. Mitin. The dynamic level shift method for improving the convergence of the SCF
procedure. J. Comput. Chem. 9, 107-110 (1988).

188. M.D. Ermolaeva, A. van der Vaart and K.M. Merz, Jr.. Implementation and testing of a
frozen density matrix - divide and conquer algorithm. J. Phys. Chem. 103, 1868-1875
(1999).

189. A. van der Vaart and K.M. Merz, Jr.. Divide and conquer interaction energy decomposi-
tion. J. Phys. Chem. A 103, 3321-3329 (1999).

190. K. Raha, A. van der Vaart, K. E. Riley, M. B. Peters, L. M. Westerhoff, H. Kim and K.M.
Merz Jr.. Pairwise decomposition of residue interaction energies using semiempirical
quantum mechanical methods in studies of protein-ligand interaction. J. Am. Chem. Soc.
127, 6583-6594 (2005).

191. B. Wang, E.N. Brothers, A. van der Vaart and K.M. Merz Jr.. Fast semiempirical calcula-
tions for nuclear magnetic resonance chemical shifts: A divide-and-conquer approach. J.
Chem. Phys. 120, 11392-11400 (2004).

192. B. Wang, K. Raha and K.M. Merz Jr.. Pose scoring by NMR. J. Am. Chem. Soc.
126, 11430-11431 (2004).

193. B. Wang and K.M. Merz, Jr.. A fast QM/MM (quantum mechanical/molecular mechani-
cal) approach to calculate nuclear magnetic resonance chemical shifts for macro-
molecules. J. Chem. Theory Comput. 2, 209-215 (2006).

194. A. Miranker and M. Karplus. Functionality maps of binding sites: A multiple copy simul-
taneous search method. Proteins: Str. Funct. Gen. 11, 29-34 (1991).

195. X. Cheng, V. Hornak and C. Simmerling. Improved conformational sampling through an
efficient combination of mean-field simulation approaches. J. Phys. Chem. B 108, (2004).

3/3/06

References Page 309

196. C. Simmerling, T. Fox and P.A. Kollman. Use of Locally Enhanced Sampling in Free
Energy Calculations: Testing and Application of the alpha to beta Anomerization of Glu-
cose.. J. Am. Chem. Soc. 120, 5771-5782 (1998).

197. J.E. Straub and M. Karplus. Enery partitioning in the classical time-dependent Hartree
approximation. J. Chem. Phys. 94, 6737 (1991).

198. A. Ulitsky and R. Elber. The thermal equilibrium aspects of the time-dependent Hartree
and the locally enhanced sampling approximations: Formal properties, a correction, and
computational examples for rare gas clusters. J. Chem. Phys. 98, 3380 (1993).

199. J.J. Prompers and R. Brüschweiler. General framework for studying the dynamics of
folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. J.
Am. Chem. Soc. 124, 4522-4534 (2002). See esp. Eq. A14.

200. J.J. Prompers and R. Brüschweiler. Dynamic and structural analysis of isotropically dis-
tributed molecular ensembles. Proteins 46, 177-189 (2002). See esp. Eq. 7.

201. M.L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst. 16, 548-558
(1983).

202. J. Srinivasan, T.E. Cheatham, III, P. Kollman and D.A. Case. Continuum solvent studies of
the stability of DNA, RNA, and phosphoramidate--DNA helices. J. Am. Chem. Soc.
120, 9401-9409 (1998).

203. P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan,
W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case and T.E. Cheatham, III. Calcu-
lating structures and free energies of complex molecules: Combining molecular mechanics
and continuum models. Accts. Chem. Res. 33, 889-897 (2000).

204. W. Wang and P. Kollman. Free energy calculations on dimer stability of the HIV protease
using molecular dynamics and a continuum solvent model. J. Mol. Biol. 303, 567 (2000).

205. C. Reyes and P. Kollman. Structure and thermodynamics of RNA-protein binding: Using
molecular dynamics and free energy analyses to calculate the free energies of binding and
conformational change. J. Mol. Biol. 297, 1145-1158 (2000).

206. M.R. Lee, Y. Duan and P.A. Kollman. Use of MM-PB/SA in estimating the free energies
of proteins: Application to native, intermediates, and unfolded vilin headpiece. Proteins
39, 309-316 (2000).

207. J. Wang, P. Morin, W. Wang and P.A. Kollman. Use of MM-PBSA in reproducing the
binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to
HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc. 123, 5221-5230
(2001).

208. S. Huo, I. Massova and P.A. Kollman. Computational Alanine Scanning of the 1:1 Human
Growth Hormone-Receptor Complex. J. Comput. Chem. 23, 15-27 (2002).

209. S.R. Niketic and K. Rasmussen. The Consistent Force Field: A Documentation. New
York: Springer-Verlag, (1977).

210. C. Cerjan and W.H. Miller. On finding transition states. J. Chem. Phys. 75, 2800 (1981).

211. D.T. Nguyen and D.A. Case. On finding stationary states on large-molecule potential
energy surfaces. J. Phys. Chem. 89, 4020-4026 (1985).

212. G. Lamm and A. Szabo. Langevin modes of macromolecules. J. Chem. Phys.
85, 7334-7348 (1986).

3/3/06

References Page 310

213. J. Kottalam and D.A. Case. Langevin modes of macromolecules: application to crambin
and DNA hexamers. Biopolymers 29, 1409-1421 (1990).

214. C.I. Bayly, P. Cieplak, W.D. Cornell and P.A. Kollman. A well-Behaved electrostatic
potential based method using charge restraints for determining atom-centered charges: The
RESP model. J. Phys. Chem. 97, 10269 (1993).

215. W.D. Cornell, P. Cieplak, C.I. Bayly and P.A. Kollman. Application of RESP charges to
calculate conformational energies, hydrogen bond energies and free energies of solvation.
J. Am. Chem. Soc. 115, 9620-9631 (1993).

216. P. Cieplak, W.D. Cornell, C. Bayly and P.A. Kollman. Application of the multimolecule
and multiconformational RESP methodology to biopolymers: Charge derivation for DNA,
RNA and proteins. J. Comput. Chem. 16, 1357-1377 (1995).

217. S. Arnott, P.J. Campbell-Smith and R. Chandrasekaran. In Handbook of Biochemistry and
Molecular Biology, 3rd ed. Nucleic Acids--Volume II, G.P. Fasman, Ed. Cleveland: CRC
Press, (1976). pp. 411-422.

3/3/06

Index 311

Index

This index is designed to help locate information for particular variable names. The Table of
Contents should be used to identify subject areas.

8

8M-urea-water 29

A

accept 124
add 46
addAtomTypes 47
addIons 47
addPdbAtomMap 47
addPdbResMap 48
adjust_q 149
aexp 180
alias 49
align 185
all 108
alpb 118
alpha 277
AMBERBUILDFLAGS 10
angav e 109
angavi 110
angle 107
Arad 118
arange 181
atnam 176
attract 108
awt 181

B

bdwnhl 277
beeman_integrator 208
bellymask 93
bond 49, 107
bondByDistance 49
buffer 66
buphl 278

C

cavity_offset 125
cavity_surften 125
center 50

charge 50
check 50
chloroform 29
chngmask 104
clambda 150
clearPdbResMap 44
closeness 66
cntrl 89
column_fft 103
COM 94
combine 51
comp 97
copy 51
createAtom 52
createParmset 52
createResidue 52
createUnit 52
cter 183
cut 101, 109, 115, 276
cutfd 125
cutnb 125
cutres 125

D

dataset 186
dbfopt 124
dcut 187
deleteBond 52
desc 53
dfpred 277
dftb_disper 146
dftb_doscc 146
dia_shift 133
dia_type 132
dia_xfile 133
dielc 101, 276
dij 186
dipmass 105
DIPOLE 112
dipole_scf_iter_max 209
dipole_scf_tol 208
diptau 105
diptol 105

3/3/06

Index 312

DISANG 112
disave 109
disavi 110
dobs 296
dobsl 186
dobsu 186
do_vdw_longrange 209
do_vdw_taper 209
drms 94, 275
dsum_tol 102
dt 94
dtemp 296
DUMPAVE 112
dumpfreq 111
dwt 186
dx0 94
dxm 297

E

edit 54
ee_damped_cut 209
eedmeth 103
ee_dsum_cut 208
eedtbdns 103
eg ap_umb 135, 137
elec 108
emap 137
emix 180
emx 277
epsin 123
epsout 123
eta 277
evb_dyn 133
ew ald 102
ew_coeff 103
ew_type 102
extdiel 117
extra-points 14, 22, 104

F

fcap 99
fillratio 124
frameon 104
frc_int 297
freezemol 187

G

gamma_ln 96
gbsa 117
gigj 186
grnam1 179
grnam2 179
groupSelectedAtoms 54

H

HAS_10_12 9, 21
hb 108
heat 297
help 55
hnot 278
hrmax 277
hwtnm1 98
hwtnm2 98

I

i3bod 276
ialtd 176
iamoeba 101
iat 175
iatr 182
ibelly 93
icfe 150
iconstr 180
id 186
id2o 181
idc 145
idecomp 92
idiel 276
idir 278
ievb 101, 130
iflag 278
ifntyp 179
ifqnt 101
ifvari 176
ig 96
igb 101, 115
igr1 178
igr2 179
ihp 180
iinc 106
ilevel 276
imin 90

3/3/06

Index 313

impose 55
improp 108
imult 106, 177
indmeth 105
ineb 168
intdiel 116
intern 108
invwt1,invwt2 181
ioseen 277
ioutfm 92
ipnlty 99
ipol 18, 62, 101, 276
iprot 183, 184
iprr 276
iprw 276
ips 104
iqmatoms 145
ir6 179
iresid 176
irest 91
irstdip 105
irstyp 176
iscale 99
ischrgd 297
isdir 278
isgend 95
isgld 95
isgsta 95
ismem 276
istart 278
istep1 106
istep2 106
istrng 123
isw 278
itgtmd 154
itrmax 148
ivcap 99
iv ect 278
ivform 276
iwrap 91
ixpk 179

J

jd 186
jfastw 98
jhp 180

K

klambda 150
kmaxqx,y,z 146
ksqmaxq 146

L

list 56
LISTIN 112
LISTOUT 112
LMOD 94
lnk_atomic_no 149
lnk_dis 149
loadAmberParams 56
loadAmberPrep 56
loadMol2 58
loadOff 57
loadPdb 58
loadPdbUsingSeq 59
logFile 59

M

makeANG_RST 191
makeCHIR_RST 193
makeDIST_RST 187
matcap 297
maxcyc 93, 275
maxiter 105
maxitn 124
measureGeom 59
methanol 29
mlimit 102
morsify 134
mxsub 99

N

namelists 89
namr 182
natr 182
nb 108
nbflag 103
nbias 132
nbtell 103
nbuffer 124
ncyc 93
ndiag 277

3/3/06

Index 314

ndip 186
netfrc 103
nevb 132
nfft1 102
nfft2 102
nfft3 102
ninc 177
nme 184
N-methylacetamide 29
nmorse 132
nmpmc 184
nmropt 90
noeexp 180
noeskp 99
noesy 108
NOESY 112
noshakemask 98
npbgrid 124
npbverb 126
npeak 180
npopt 125
nprint 276
nprot 182, 184
npscal 297
nrespa 94, 115
nring 182
nsas 123
nsave 276
nscm 94
nsnb 101
nsnba 125
nsnbr 125
nstep0 109
nstep1 176
nstep2 176
nstlim 94, 162
ntave 91
ntb 100, 115
ntc 98
nter 183
ntf 100
ntmin 93
ntp 97
ntpr 91
ntr 93
ntrun 275
ntrx 91
ntt 95
ntu 297

ntwe 92
ntwprt 92
ntwr 91
ntwv 92
ntwx 92
ntx 90, 276
ntxo 91, 276
num_datasets 186
numexchg 162
numwatkeep 165
nv ect 276
nxpk 179

O

obs 183, 184
offset 117
omega 181
opta1 184
opta2 184
optkon 184
optomg 184
optphi 184
opttet 184
order 102
oscale 182
owtnm 98

P

pbtemp 123
PCSHIFT 112
pcshift 182
pencut 99
peptide_corr 148
phiform 126
phiout 125
plevel 297
POL3 28
POLBOX 66
pres0 97
printcharges 148
pseudo_diag 147
pseudo_diag_criteria 148

3/3/06

Index 315

Q

qmcharge 147
qmcut 145
qm_ewald 145
qmgb 146
qmmask 145
qm_pme 146
qmshake 148
qmtheory 146
quit 60

R

r1a→r4A 177
r1→r4 177
radiopt 123
rbornstat 117
rdt 117
remap 134
remove 60
repcrd 162
repulse 108
rest 108
restl 108
restraintmask 93
restraint_wt 93
rests 108
rgbmax 117
rjcoef 178
rk2a,rk3a 177
rk2,rk3 177
rst 175
rstar 108
rsum_tol 102

S

s11,s12,s13,s22,s23 186
saltcon 117
saveAmberParm 61
saveAmberParmPol 62
saveOff 62
savePdb 62
scaldip 105
scalec 124
scalm 99
scee 21, 101, 276
scfconv 147

scnb 21, 101, 276
senergy 194
sequence 62
set 63
setBox 65
sgft 95
shcut 183
shf 182
shifts 108
SHIFTS 112
short 108
shrang 183
skinnb 103
skmax 168
skmin 168
smoothopt 124
smx 277
solvateBox 66
solvateCap 67
solvateDontClip 68
solvateOct 68
solvateShell 69
sor_coefficient 209
source 69
space 124
SPCBOX 66
SPC/E 28
spin 147
sprob 123
stpmlt 109
str 182
surften 117
sviol 194
sviol2 194

T

t 94, 276
taumet 181
taup 97
taurot 181
tausw 100
tautp 96, 109
temp0 96, 109
temp0les 96, 109
tempi 96
tempsg 95
tgtfitmask 154
tgtmdfrc 154

3/3/06

Index 316

tgtrmsd 109, 154
tgtrmsmask 154
tight_p_conv 147
timlim 297
TIP3P 28
TIP3PBOX 66
TIP4P 28
TIP4PBOX 66
TIP5P 28
TIP5PBOX 66
tmode 168
tol 98
tolpro 184
torave 109
toravi 110
torsion 107
transform 69
translate 70
tsgavg 95
type 106

V

value1 106
value2 106
vdw 108
vdwmeth 103
verbose 102, 208
verbosity 70, 147
vfac 168
vlimit 97
vrand 96
vv 168

W

watnam 98
writepdb 148
wt 106, 183, 184

X

xch_cnst 133
xch_exp 134
xch_gauss 134
xch_type 133
xch_xfile 133

Z

zMatrix 71

3/3/06

	Introduction
	What to read next
	Information flow in Amber
	Preparatory programs
	Simulation programs
	Analysis programs

	Installation of Amber 9
	More information on parallel machines or clusters
	Installing Non-Standard Features
	Installing on Microsoft Windows
	Testing
	Memory Requirements
	Notes for users of previous versions of Amber

	Basic tutorials

	Specifying a force field
	Description of the database files
	Specifying which force field you want in LEaP
	The AMOEBA potentials
	The Duan et al. (2003) force field
	The Yang et al. (2003) united-atom force field
	1999 and 2002 force fields and recent updates to these parameters
	The Cornell et al. (1994) force field
	The Weiner et al. (1984,1986) force fields
	Glycam-04 force field for carbohydrates
	Notes on the naming of Prep files
	Carbohydrate Naming Convention in Glycam-04
	Building a polysaccharide in LEaP

	Ions
	Solvent models

	LEaP
	Introduction
	Concepts
	Commands
	Variables
	Objects

	Starting LEaP
	Verbosity
	Log File

	Using LEaP
	Universe Editor
	Unit Editor
	Atom Properties Editor
	Parmset Editor

	Basic instructions for using LEaP with AMBER
	Building a Molecule For Molecular Mechanics
	Amino Acid Residues
	Nucleic Acid Residues
	Miscellaneous Residues

	Commands
	add
	addAtomTypes
	addIons
	addPdbAtomMap
	addPdbResMap
	alias
	bond
	bondByDistance
	center
	charge
	check
	combine
	copy
	createAtom
	createParmset
	createResidue
	createUnit
	deleteBond
	desc
	edit
	groupSelectedAtoms
	help
	impose
	list
	loadAmberParams
	loadAmberPrep
	loadOff
	loadMol2
	loadPdb
	loadPdbUsingSeq
	logFile
	measureGeom
	quit
	remove
	saveAmberParm
	saveAmberParmPol
	saveOff
	savePdb
	sequence
	set
	setBox
	solvateBox
	solvateCap
	solvateDontClip
	solvateOct
	solvateShell
	source
	transform
	translate
	verbosity
	zMatrix

	Antechamber
	Principal programs
	antechamber
	parmchk

	A simple example for antechamber
	Programs called by antechamber
	atomtype
	am1bcc
	bondtype
	prepgen
	espgen
	respgen

	Miscellaneous programs
	crdgrow
	parmcal
	database

	Sander basics
	Introduction.
	Credits.
	File usage.
	Example input files.
	Overview of the information in the input file.
	General minimization and dynamics parameters.
	General flags describing the calculation.
	Nature and format of the input.
	Nature and format of the output.
	Frozen or restrained atoms.
	Energy minimization.
	Molecular dynamics.
	Self-Guided Langevin dynamics.
	Temperature regulation.
	Pressure regulation.
	SHAKE bond length constraints.
	Water cap.
	NMR refinement options.

	Potential function parameters
	Generic parameters
	Particle Mesh Ewald.
	Using IPS for the calculation of nonbonded interactions
	Extra point options
	Polarizable potentials.
	Dipole Printing

	Weight change information.
	File redirection commands.

	Using Sander
	The Generalized Born/Surface Area Model
	GB/SA input parameters
	ALPB (Analytical Linearized Poisson-Boltzmann)

	Poisson-Boltzmann calculations.
	Introduction.
	Usage and keywords.
	Example inputs.

	Empirical Valence Bond
	Introduction.
	General usage description.
	EVB input variables and interdependencies.
	Biased sampling.
	Biased sampling usage.

	QM/MM calculations
	Changes from earlier versions of Amber
	The hybrid QM/MM potential
	The QM/MM interface and link atoms
	Generalized Born implicit solvent
	Ewald and PME
	Hints for running successful QM/MM calculations
	General QM/MM &qmmm Namelist Variables
	Link Atom Specific QM/MM &qmmm Namelist Variables

	Free energies using thermodynamic integration.
	Targeted MD
	Potentials of mean force using umbrella sampling.
	Steered Molecular Dynamics (SMD) and the Jarzynski Relationship
	Replica Exchange Molecular Dynamics (REMD)
	Restarting REMD simulations
	 Content of the output files
	Major changes from sander when using replica exchange
	Cautions when using replica exchange
	Replica exchange example
	Replica exchange using a hybrid solvent model
	Cautions for hybrid solvent replica exchange

	Nudged elastic band calculations
	Background
	Preparing input file for NEB
	Input Variables

	Constant pH calculations
	Background
	Preparing a system for constant pH
	Running at constant pH
	Analyzing constant pH simulations
	Extending constant pH to additional titratable groups

	NMR refinement using SANDER.
	Distance, angle and torsional restraints.
	NOESY volume restraints.
	Chemical shift restraints.
	Direct dipolar coupling restraints
	Preparing restraint files for Sander
	Preparing distance restraints: makeDIST_RST.
	Preparing torsion angle restraints: makeANG_RST
	Chirality restraints: makeCHIR_RST
	Direct dipolar coupling restraints: makeDIP_RST
	Getting summaries of NMR violations
	Time-averaged restraints.
	Multiple copies refinement using LES
	Some sample input files

	Path-Integral Molecular Dynamics
	General theory.
	Preparing PIMD input files

	Using the AMOEBA force field

	Divcon
	Introduction.
	Getting Started
	Standard Jobs
	Divide and Conquer Jobs

	Keywords
	Hamiltonians
	Convergence Criterion
	Restrained Atoms
	Output
	General
	Gradient
	Atomic Charges
	Subsetting
	Nuclear Magnetic Resonance(NMR)
	Default Keywords

	Citation Information

	PMEMD
	Introduction.
	Functionality
	New variables
	New command line options
	Some Performance Hints
	Installation
	Acknowledgements

	LES
	Preparing to use LES with AMBER
	Using the ADDLES program
	More information on the ADDLES commands and options
	Using the new topology/coordinate files with SANDER
	Using LES with the Generalized Born solvation model
	Case studies: Examples of application of LES
	Enhanced sampling for individual functional groups: Glucose.
	Enhanced sampling for a small region: Application of LES to a nucleic acid loop
	Improving conformational sampling in a small peptide

	Unresolved issues with LES in AMBER

	ptraj
	ptraj command prerequisites
	ptraj input/output commands
	ptraj commands that modify the state
	ptraj action commands
	Correlation and fluctuation facility
	Examples
	Hydrogen bonding facility
	rdparm

	MM_PBSA
	General instructions
	Preparing the input file
	Auxiliary programs used by MM_PBSA

	Nmode
	Introduction
	General description
	Files
	Input description

	Miscellaneous
	Resp
	nucgen
	ambpdb
	protonate
	ambmask
	pol_h and gwh
	fantasian
	elsize

	Appendices
	Appendix A: Namelist Input Syntax
	Appendix B: GROUP Specification
	Appendix C: Retired Namelist Variables

	References

